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ABSTRACT

In this paper, we address the task of estimating the objects that each pedestrian is gazing at in traffic environ-
ments with multiple pedestrians. Gaze object estimation is the task of determining “who is gazing at what”
such as Pedestrian A looking at Pedestrian B. We propose a gaze object estimation method that considers re-
lationships among multiple pedestrians. In other words, we consider not only the target person but also what
surrounding people are looking at. Specifically, the Transformer encoder processes the features of all pedestri-
ans simultaneously to extract features that encode their mutual relationships. These output features are then
mapped via Gaze-Role Projection to two role-specific features for each pedestrian: the looker feature and the
lookee feature. Finally, the network is trained to maximize the similarity between the looker’s feature and the
lookee’s feature for the correct gaze pair. In our experiments, we created the PEDESTRIAN AWARENESS
DATASET. This dataset was created by preparing scenarios that predefined pedestrian actions and gaze objects,
and conducting filming based on these scenarios. As a result of the experiment, we confirmed that the proposed
method improves estimation accuracy.
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1. INTRODUCTION

In recent years, autonomous mobile robots have been increasingly deployed in environments with multiple pedes-
trians, such as shopping malls. For smooth movement of both pedestrians and robots, robots need to understand
interactions among pedestrians. Since pedestrians act based on their field of vision, information about “who is
looking at what” is effective for understanding interaction. As shown in Fig.1, gaze object estimation determines
that pedestrians A and B are looking at each other, pedestrian C is looking at pedestrian B, and pedestrian D
doesn’t have a specific gaze object. This study addresses the gaze object estimation task of estimating “who is
looking at what.” In this context, “object” includes pedestrians, vehicles, traffic lights, and other entities. Vari-
ous studies have been conducted on estimating human gaze. Racasens et al.! created the Gazefollow dataset and
proposed a gaze estimation model that takes head region images as input and outputs a heatmap representing
a person’s gaze. However, when pedestrians are distant from the viewpoint of an autonomous mobile robot,
obtaining clear head images (mainly the eye region) is difficult. Thus, applying the method of Recasens et al.’
to the traffic scenes targeted in this paper is difficult. Additionally, gaze estimation using heatmaps can face dif-
ficulties in discrimination when gaze objects are densely clustered. Tonini et al.? proposed a Transformer-based
method for end-to-end object detection and gaze estimation. The method detects objects in the gaze direction
and outputs their class and bounding box coordinates. However, there are still limitations for distant pedes-
trians because gaze estimation relies on head features, and gaze object estimation via heatmaps has difficulty
distinguishing multiple objects in close proximity.

Therefore, our research group has been working on gaze object estimation using features of the entire pedes-
trian, not depending solely on head images. In the research by Hata et al.,> pose information and positional
coordinates of pedestrians are extracted from outdoor traffic scene images to estimate whether pedestrians are
looking at the ego-vehicle. Murakami et al.* proposed a method that learns the relationship between pedestrians’
full-body features and features of objects detected by an object detector using a Transformer to estimate gaze
objects. This approach does not depend on clear head images (mainly the eye region) or heatmaps, making
it applicable to distant pedestrians and crowded environments. However, independent estimation, which does
not consider what other pedestrians are looking at, has the problem that a pedestrian’s gaze object becomes
ambiguous when multiple gaze object candidates exist in the direction of the body orientation. Specifically, in
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Fig.1, there are multiple pedestrians in the direction Pedestrian A is facing. In this case, it is unclear which
pedestrian A is gazing at if we only focus on Pedestrian A. On the other hand, when we humans estimate the gaze
objects of surrounding pedestrians, we consider the gaze objects of other pedestrians together. In the example
of Fig.1, A and B are walking side by side in the same direction, and B appears to be gazing at A, so we can
estimate that A and B are in the same group, and it is highly likely that A is also gazing at B. This paper per-
forms gaze object estimation that considers the relationships among multiple pedestrians, imitating this human
method of gaze object estimation. Additionally, Murakami et al.* assumed that pedestrians always have gaze
objects. In reality, there are many cases where people don’t have specific gaze objects, such as when vaguely
looking in the direction of travel. If a person isn’t looking at anything specific, but we think they are, we might
misinterpret the interaction. To solve these issues, this paper proposes a gaze object estimation method that
considers relationships among multiple pedestrians and includes the presence or absence of pedestrian’s gaze.

e While conventional methods performed gaze object estimation for each pedestrian independently, this
paper improves estimation accuracy by considering relationships among multiple pedestrians in gaze object
estimation.

e This paper introduces the PEDESTRIAN AWARENESS DATASET, which assumes environments where
autonomous mobile robots operate, for the gaze object estimation task. It is based on scenarios where
pedestrians follow predefined gaze targets and walking paths.

2. PROPOSED METHOD

In this paper, for the purpose of improving the accuracy of gaze object estimation, we perform gaze object
estimation that considers relationships among multiple pedestrians. Specifically, we optimize every pedestrian’s
“looker feature q;” and “lookee feature k;” using the loss function shown in Eq.(1).
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Through optimization, the looker feature q; learns to represent who pedestrian i is likely gazing at, and the
lookee feature k; learns to represent who is likely gazing at object j. This loss function is calculated only for
pedestrians with ground truth labels for gaze objects. The model output F;; is the probability that pedestrian i
is gazing at object j (include pedestrian). It is obtained by applying the softmax function for normalization to
the score calculated by the inner product of q; and k; (Eq.(2)). Additionally, Y;; is the ground truth that takes
the value 1 when pedestrian ¢ is gazing at object j, and 0 otherwise. Both q; and k; are optimized simultaneously
because the loss function L propagates gradients based on backpropagation to each feature. As shown in Eq.(3)
and Eq.(4), q; and k; are updated by weighted sums of k; and q;, respectively. With the weight given by the error



term P;; — Y;;, they are updated to increase their inner product when Y;; = 1 and to decrease it when Y;; = 0.
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As described above, by bringing the looker features q; and lookee features k; closer together or farther
apart through a single loss function, we optimize the gaze objects of multiple pedestrians. The gaze object
estimation network that realizes the proposed method consists of three modules: Deformable Transformer which
acquires features corresponding to each object; Transformer encoder which simultaneously processes features
corresponding to each object and captures relationships among objects; Gaze-Role Projection which divides the
features of each pedestrian and object into looker features q; and lookee features k; and finally outputs the
estimation results of gaze objects. Each module is explained below.

2.1 Configuration of Gaze Object Estimation Network

1) Deformable Transformer The input image (RE*#*W) is fed into Backbone (ResNet50°) to acquire im-
age features. The Deformable Transformer® with an Encoder-Decoder architecture takes these features as input
and outputs Object Queries O’ = {0q;,04qs,...,0qy}, where each oq; is a feature corresponding to a specific
object in the image.

2) Projection Layer The Projection Layer consists of a Pose Estimator and a Transformer Encoder. The
Pose Estimator estimates pedestrian poses within each BBox and outputs Pose Features P”. BBox coordinates
and classes are predicted from Object Queries through an MLP. The Transformer Encoder” takes Object Queries
O', Pose Features P”, BBox, and class embeddings, and through self-attention, each object query oq; interacts
with all features of all objects to output x;.

3) Gaze-Role Projection Gaze-Role Projection takes z; = [x;;p”;] as input, which concatenates the pedes-
trian feature vector obtained from the Transformer encoder and the Pose Feature P” of each pedestrian. We
term this module “gaze-role projection” because it linearly projects each object’s features into two distinct roles:
“looker” and “lookee.” From the input z;, it separates into “looker features q;” and “lookee features k;” using
two projection matrices W, and Wj,. Pedestrians are assigned both roles (transformed into both q; and k;),
while objects other than pedestrians are assigned only the “lookee” role (transformed only into k;). Finally, the
inner product of q; and k; is taken and normalized by the softmax function to output the probability F;; that
pedestrian i is gazing at object j (Eq.(2)).

In this method, since Gaze-Role Projection simultaneously estimates the gaze objects of multiple pedestrians
using the features x; of all objects output by the Transformer encoder. Thus, oq; corresponding to pedestrians in
the Transformer encoder can acquire gaze information that considers the gaze objects of surrounding pedestrians.
This realizes gaze object estimation that considers relationships among multiple pedestrians.

3. EXPERIMENT

We perform pedestrian gaze object estimation of pedestrians using the gaze object estimation network. The
experimental settings and results are described below.

3.1 Pedestrian Awareness Dataset

We created the PEDESTRIAN AWARENESS DATASET, which annotates the gaze objects of multiple pedes-
trians. Although existing several datasets assume environments surrounding autonomous mobile robots such as
shopping malls, including MOT16,® they do not have gaze object annotations. Additionally, the “Gaze Target
Dataset in Traffic Scenes” constructed by Murakami et al.* includes annotations of pedestrian gaze objects, but
since it adds annotations from a third-person view to traffic scene datasets published by Waymo and others,’
the ground truth of gaze objects is unknown. Furthermore, this dataset targets outdoor traffic scenes, which
differs from the environments surrounding autonomous mobile robots assumed in this paper. Therefore, there is
no existing dataset that includes both interactions among pedestrians and the ground truth of these pedestrians’
gaze objects.

Thus, we constructed the PEDESTRIAN AWARENESS DATASET, which includes ground truth annota-

tions of pedestrians’ gaze objects in environments surrounding robots. Ground truth annotation is inherently



impossible through estimation from third-person view. Approaches to obtain ground truth include asking ac-
tual pedestrians about their gaze objects afterward or specifying them in advance. However, asking afterward
may result in uncertain participant memory and complicated interviewing, making it unsuitable for large-scale
data collection. Therefore, we created the dataset through scenario-based experiments where gaze objects were
specified in advance. Specifically, assuming environments surrounding autonomous mobile robots, we prepared
multiple scenes in advance that include interactions among pedestrians (specifying which pedestrians are gaze
objects and walking directions), conducted video recording following the scenes, and performed frame extraction
and annotation. The gaze objects of pedestrians were kept the same for a certain period to reduce annotation
cost. The five scenes are shown below.

e Passing (include Fig.1) e Following e Free movement (with fixed

e Overtaking e Crossing gaze target pedestrian)

Among pedestrians, there are pedestrians gazing at specific pedestrians, pedestrians who don’t have specific gaze
objects, and pedestrians without gaze object annotations. Gaze object annotations and annotations indicating
no specific gaze object were given only to pedestrians whose entire head is visible and pedestrians whose gaze
object is partially visible within the frame. Annotations for each pedestrian contain pedestrian ID, gaze object
ID, label indicating no specific gaze object, label for gazing at smartphone, and BBox coordinates.

3.2 Experiment

Each value in Table 1 is from the PEDESTRIAN AWARENESS DATASET detected by Deformable DETR. For
the experiment, we only evaluate the gaze estimation accuracy for cases where Deformable DETR successfully
detects both the pedestrian and ground truth gaze object. The gaze object candidates when estimating with the
gaze object estimation network are pedestrians only, and at test time, only images with four pedestrians are used.
Additionally, during training, only the parameters of the Projection Layer are updated, and the Backbone and
Deformable DETR are initialized with pre-trained weights. Among the proposed methods, the one that utilizes
Pose Estimator is denoted as oursl (ogq+pose), and the one that does not utilize Pose Estimator is denoted as
ours2 (0q). In the experiment, we compare three methods including Murakami et al.’s method.* And we modify
the design of Murakami’s method to enable training and inference for pedestrians who don’t have specific gaze
objects. We also utilize RTMPose!? as the Pose Estimator.

3.3 Results and Discussion

Fig.3 evaluates three methods (oursl (oq-+pose), ours2 (oq), and Murakami) using Top-K Accuracy. Top-K
Accuracy indicates the rate at which the ground truth is within the top K results when the gaze object estimation
results are sorted by probability in descending order. For Top-1 Accuracy, oursl (oq+pose) achieved 79.96%,
ours2 (oq) achieved 64.15%, showing improvement compared to Murakami®’s 51.53%. This result demonstrates
that gaze object estimation considering surrounding pedestrians, especially when utilizing pose information,
improves estimation accuracy.

Tables 2, 3, and 4 show the confusion matrices for each of the three methods. “Wrong” in the True Positive
region refers to cases where the estimated gaze object differs from the ground truth gaze object. Below we discuss
observations regarding the confusion matrices. Murakami*’s method has more false negatives compared to the
two proposed methods. Specifically, out of 10,625 pedestrians who actually have gaze objects, 3,080 (29.0%) are
incorrectly estimated as “not having a specific gaze object.” This tendency is likely influenced by the structure
of the training data. From Table 1, in the training data, the proportion of “pedestrians without specific gaze
objects” is approximately 45% (12,779/28,504). On the other hand, pedestrians “with specific gaze objects”
account for approximately 55% (15,725/28,504), but since the correct answer must be selected from an average

Table 1: Breakdown of dataset used in the experiment

Ttem Training | Test
Number of images 13,170 7,669
Number of pedestrians with specific gaze objects | 15,725 10,625
Pedestrians without specific gaze objects 12,779 7,996
Average number of gaze object candidates 2.5 3.0




Table 2. OURS1 (OQ+POSE)

100 93.95 98.28 Predicted: Predicted:
95.19 Positive Negative Total
90 8937 Actual: correct: 8,259
79.96 88.19 Positive | wrong: 1,070 1,296 10,625
80 Actual:
0 74.76 75 Negative 1,366 6,630 7,996
64.15 Total 10,695 7,926 18,621
60 Table 3. OURS2 (0Q)
50 51.53 50 Predicted: Predicted:
Positive Negative Total
40 Actual: correct: 6,601
Positive wrong: 1,385 2,639 10,625
30 Actual:
20 25 Negative 2,652 5,344 7,996
Total 10,638 7,983 18,621
10 Table 4. MURAKAMI*
0 Predicted: Predicted:
top] ton2 top3 Positive Negative Total
op op. op Actual: | correct: 3,943
—e—OURS! (OQ+POSE) —e—OURS2 (0Q) PAOSitivle wrong: 3,602 3,080 10,625
ctual:
—e—MURAKAMI [1] —e—CHANCE RATE Negative 2,343 5,653 7,996
Figure 3: Results Total 9,888 8,733 18,621

of 2.5 candidates, the accuracy when randomly selected would be approximately 22% (55% x 1/2.5). In other
words, in the training data, estimating “not having a specific gaze object” has twice the probability of being
correct compared to estimating “gazing at a specific person.” Therefore, when identifying the gaze object is
difficult, the model tends to select “not having a specific gaze object,” which has a higher probability of being
correct. In contrast, ours2 (oq) reduced false negatives to 2,639 (24.8%). This is likely because by simultaneously
considering the gaze relationships of multiple pedestrians through the Transformer encoder, it became possible
to identify gaze objects of pedestrians that were difficult to identify through independent estimation.

Additionally, Fig.4 visualizes part of the estimation results. Each row in Fig.4 visualizes the estimation results
using each model on the same image.

(a)~(c) show one frame from a crossing scene. Both oursl (ogq+pose) and ours2 (oq) accurately estimate
that the pedestrians at both ends are looking at the pedestrian crossing in front of them. However, Murakami*
makes incorrect estimations for two pedestrians.

(d)~(f) show one frame from a passing scene where there is a group with mutual gaze. For the 543 pedestrians
in total included in this scene, the estimation accuracy was ours2 (oq) (67.3%), oursl (oq+pose) (58.9%), and
Murakami* (47.9%). Additionally, among the 128 frames containing pedestrians looking at each other, the rate
of correctly estimating both pedestrians with mutual gaze was 50.0% for ours2 (oq), 18.0% for Murakami,* and
15.6% for oursl (oq+pose). It is possible that gaze object estimation considering relationships among multiple
pedestrians and gaze object estimation predicted from pose are conflicting.

4. CONCLUSION

In this paper, we proposed an estimation method to estimate what multiple pedestrians surrounding autonomous
mobile robots are looking at in environments such as shopping malls. We also constructed the PEDESTRIAN
AWARENESS DATASET as a dataset that contains gaze objects considering interactions among pedestrians.
With the proposed method, by considering not only the pedestrian being estimated but also what other pedes-
trians are looking at, we were able to improve the estimation accuracy of gaze objects. And when considering
pose information, we were able to significantly improve the accuracy. On the other hand, accuracy improvement
is expected in cases where gaze objects inferred from relationships among pedestrians and gaze objects inferred
from pose information differ.



(a) oursl (oq+pose)

(d) oursl (og+pose) (e) ours2 (oq) (f) murakami
Figure 4: visualization of result: Arrows indicate estimated gaze targets. Cross marks indicate no specific gaze
object. Blue: correct estimation. Red: incorrect estimation. Black BBoxes: pedestrians without annotations.
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