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Abstract—Intelligent transportation systems (ITS) rely on
semantic segmentation for dense scene understanding and safe
decision-making. However, real-world ITS scenarios often involve
rare or uncommon objects that may significantly impact decision-
making. To handle such cases, models must go beyond closed-set
assumptions. Zero-shot semantic segmentation (ZSS) addresses
this by allowing models to segment novel classes without labeled
examples. To adapt models to these unseen classes, existing
approaches typically rely on self-training strategies, where pseudo
labels are generated for unlabeled regions based on high-
confidence predictions. However, these methods often underutilize
the semantic embeddings, which are merely employed to produce
pseudo labels, thereby failing to fully exploit CLIP’s powerful
vision-language alignment capabilities. To address this limitation,
we propose Semantic-Driven Distillation (SDD). Specifically, SDD
aggregates dense features from a segmentation model into a
predicted CLS token via a weighted sum, where the weights are
computed based on similarity to the original CLS token from the
CLIP visual encoder. It then constructs probability distributions
over the predicted and original CLS tokens, as well as the
corresponding text embeddings, and aligns these distributions
using KL divergence. By leveraging semantic embeddings as
a bridge, SDD enables the segmentation model to better align
with the CLIP visual encoder, thereby inheriting CLIP’s strong
vision-language matching capabilities. To further enhance the
effectiveness of SDD, we introduce Region-aware Self-Training
(RST), which first discovers potential object regions by clustering
dense features extracted from CLIP. Within each region, high-
confidence predictions are selected as pseudo labels for novel
classes. Extensive experiments on standard ZSS benchmarks
demonstrate the effectiveness of our proposed approach.

Index Terms—Semantic-driven Distillation, Zero-shot Learn-
ing, Semantic Segmentation

I. INTRODUCTION

Intelligent transportation systems (ITS) rely heavily on
accurate scene understanding to support applications such as
autonomous driving, traffic monitoring, and advanced driver
assistance systems (ADAS). Semantic segmentation, which
assigns a semantic label to each pixel in an image [1]-[3],
plays a crucial role in ITS by providing fine-grained perception
of the environment, including roads, vehicles, pedestrians,
traffic signs, and lane markings. To enable segmentation
models to recognize a wide range of classes, a substantial
amount of high-quality annotated data is typically required.
Although semantic segmentation models benefit from full
supervision, real-world ITS scenarios often involve numerous
rare or uncommon object classes that are not present in the
training data. These rare classes, such as strollers, traffic
cones, or animals crossing the road, may significantly affect
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driving decisions despite their low frequency. This has led
to growing interest in zero-shot semantic segmentation (ZSS),
which aims to recognize and segment such unseen classes with
only partial supervision. This paradigm substantially reduces
the dependence on exhaustive annotations and has emerged
as a promising direction for scalable and efficient semantic
understanding.

Depending on whether the names of novel classes are
available during training, existing zero-shot semantic segmen-
tation methods can be categorized into inductive (class names
unknown) and transductive (class names known) settings [4]-
[8]. In practice, transductive evaluation is typically performed
by first training a segmentation model under the inductive
setting for several iterations, followed by applying self-training
techniques [4], [9]-[11] to generate pseudo labels for unseen
classes and further enhance the segmentation performance.
Despite their success, existing methods face two main limi-
tations, including @) an insufficient utilization of the semantic
embedding where the semantic embeddings are only used for
producing pseudo labels and serving as a classifier; and @ a
simple self-training method may overlook the less-dominant
classes, leading to suboptimal performance.

To address these two challenges, we introduce Semantic-
Driven Distillation (SDD) and Region-aware Self-Training
(RST), respectively. By aligning the predicted CLS tokens
from dense segmentation features with CLIP’s visual and
textual embeddings through a semantic bridge formed by text,
SDD distills CLIP’s vision-language matching capability into
the segmentation model, ultimately enabling it to perceive
and segment unseen classes. RST enhances the learning of
less-dominant unseen classes by discovering region-level se-
mantic structures from CLIP features and selectively gen-



erating pseudo labels within each region. Specifically, SDD
first computes the similarity between dense features from
the segmentation model and the CLS token of the CLIP
visual encoder [12]. This similarity is then used to perform
a weighted sum over the dense features, resulting in the
predicted CLS tokens. Subsequently, we compute the distri-
butional distance between the semantic embeddings and both
the real and predicted CLS tokens, and apply KL divergence
to distill knowledge from CLIP into the segmentation model.
In addition, to better utilize less-dominant classes, we observe
that different classes may occupy different regions within an
image. Based on this observation, RST assumes that even
though some classes are correctly segmented, they may still
exhibit low confidence scores and thus contribute little during
training. To ensure these less-dominant yet correctly predicted
classes are fully utilized, RST first clusters the dense features
extracted from the CLIP visual encoder to identify regions
potentially corresponding to different unseen classes. Within
each region, we then select the top-K predictions as pseudo
labels to guide the training process.

Unlike existing methods that apply self-training only in
transductive zero-shot settings [6], [8], [13], resulting in
the underutilization of less-dominant classes, the proposed
Semantic-Driven Distillation (SDD) leverages all dense fea-
tures, including those potentially belonging to unseen classes.
By using semantic embeddings as a bridge, SDD effectively
aligns the segmentation model with the semantic space of
CLIP, enabling the close-set segmentation model for zero-
shot tasks. Different from conventional knowledge distillation
methods [14]-[17], which require the teacher and student to
produce the same type of features (i.e., both dense features
or both sparse tokens), our method enables cross-type distil-
lation between dense features and sparse tokens. Compared
with CLIP-ZSS [7], which directly aligns visual features, our
approach leverages text embeddings as an intermediate bridge
for knowledge transfer, preserving semantic structure more
effectively. Furthermore, unlike traditional self-training meth-
ods that select the top K % highest-confidence predictions as
pseudo labels [6], [8], [13], our proposed Region-aware Self-
Training (RST) selects pseudo labels within localized regions.
This strategy enables better utilization of less-dominant classes
and enhances the robustness of the segmentation model in
zero-shot scenarios. Our contributions are listed as follows:

— We propose a novel framework consisting of Semantic-
Driven Distillation (SDD) and Region-aware Self-Training
(RST), which jointly enhance the ability of closed-set seg-
mentation models to generalize to unseen classes.

- By leveraging semantic guidance only during training, our
method enables the segmentation model to perform zero-shot
semantic segmentation independently, without relying on the
CLIP visual encoder during inference.

— Without introducing additional parameters or computa-
tional overhead during inference, our method can be flexibly
integrated into current powerful segmentation models and
achieves state-of-the-art performance on multiple zero-shot
segmentation benchmarks.

II. RELATED WORKS
A. Zero-shot Semantic Segmentation

Semantic segmentation assigns a label to each pixel in an
image, unlike image classification which predicts a single
label per image [2], [18]-[22]. Recently, zero-shot semantic
segmentation (ZSS) has gained attention for its goal of seg-
menting unseen classes absent from training data [4]-[6], [8],
[23]. To enable such generalization, many methods employ the
CLIP visual encoder [12] due to its strong vision-language
alignment, typically combined with visual prompts [24] or
adapters [25] to adapt CLIP for dense prediction. However,
these approaches often underutilize the semantic embeddings,
using them mainly as classifier weights or for pseudo labels,
without integrating them directly into the learning process. To
address this, we propose Semantic-Driven Distillation (SDD),
a novel framework that explicitly aligns segmentation outputs
with both CLIP visual and textual embeddings during training.
This alignment promotes better vision-language consistency
and improves generalization to unseen classes.

B. Knowledge Distillation

Knowledge distillation (KD) transfers the capabilities of
a stronger teacher model to a weaker student, enabling the
latter to achieve competitive performance with reduced com-
plexity [26]. Existing KD methods are typically categorized
as logits-based [15], [27], [28], feature-based [29], [30], or
relation-based [14], [31]. Logits-based methods align output
distributions; feature-based methods match intermediate rep-
resentations; relation-based methods distill structural relation-
ships, such as similarities among tokens or features. For exam-
ple, PADing [31] distills similarity relations between CLIP’s
text embeddings and the student’s. Our proposed Semantic-
Driven Distillation (SDD) belongs to the logits-based category
but supports cross-type distillation between sparse tokens
and dense features, unlike most methods requiring matching
representation types. In contrast to PromptKD [17], which
fine-tunes the text encoder and may weaken CLIP’s generality,
our method keeps the text encoder frozen, preserving semantic
consistency. Compared to Froster [26] and CLIP-ZSS [7],
which do not fully exploit semantic structures, SDD introduces
textual embeddings as explicit guidance, facilitating more
effective vision-language knowledge transfer.

C. Self Training

Collecting large-scale images with high-quality pixel-level
annotations is costly and time-consuming. To better utilize
limited labeled data, self-training has been widely adopted in
semi-supervised learning [32], [33], domain adaptation [34],
and weakly supervised learning [35]. Most methods gener-
ate pseudo labels by selecting the top K% most confident
predictions [32], [35] or enforcing consistency across models
or augmentations [33]. However, in zero-shot settings, these
confidence-based strategies tend to overlook less frequent or
ambiguous classes, which are often assigned low confidence or
appear inconsistently, resulting in biased training. To address
this, we propose Region-aware Self-Training (RST), which
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Fig. 2. Overview of the proposed framework. Our method consists of two main components: Semantic-Driven Distillation (SDD) and Region-aware Self-
Training (RST). In SDD (left), the segmentation model and the CLIP visual encoder extract dense and sparse features, respectively. The segmentation models
are aligned with the CLIP visual encoder via semantic-guided distillation. In RST (right), CLIP features are used to generate region masks, which find potential
areas where different unseen classes may appear. Then, the potential masks along with the pixel-level predictions are fed into the proposed region-aware
pseudo label generation model to produce the pseudo labels for unseen classes. These pseudo labels are then fused with seen-class ground truth annotations

to supervise the model.
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identifies spatial regions likely to contain different classes
and selects the top-K % predictions within each region. This
region-wise selection increases the inclusion of underrepre-
sented classes, leading to more balanced and effective learning.

III. METHOD

Preliminary. Before presenting our method, we first define the
transductive Zero-shot Semantlc Segmentation (ZSS) setting.
Formally, let D = {I’ Yz } denote a training dataset, where
I' is an input image, and st is the corresponding pixel-level
annotation containing only seen classes, and O indicates the
size of the dataset. Let A € RV*D represent a set of text
embeddings for all N classes, where D is the embedding
dimension. In the transductive setting, seen and unseen classes
are allowed to co-occur within the same image. Since filtering
out images that contain unseen classes is generally impractical,
only the pixel annotations corresponding to unseen classes
are all changed into the same ‘ignored’, while the images
themselves are retained during training. During inference,
the model is evaluated on both seen and unseen classes
simultaneously, and the segmentation output must correctly
assign labels across the full set of N classes.

Method Overview. To transfer CLIP’s perception of unseen
classes into the segmentation model, we propose two comple-
mentary components: Semantic-Driven Distillation (SDD) and
Region-Aware Self-Training (RST). SDD leverages text em-

beddings as a semantic bridge to distill CLIP’s vision-language
matching capability into the segmentation model. It aligns the
predicted CLS token, aggregated from dense features, with
CLIP’s visual and textual representations via distributional
matching. RST enhances the utilization of less-dominant un-
seen classes by clustering CLIP features to identify semantic
regions. Pseudo labels are then selectively generated from
high-confidence predictions within each region, enabling more
balanced and region-aware self-training. The overview of our
approach is shown in Fig. 2. First, we feed an input image
X into both the CLIP visual encoder to obtain the CLIP
visual features C(F+1*C including L features corresponding
to the patches of CLIP and one additional CLS tokens.
Meanwhile, we also feed the image into a segmentation model,
e.g., segformer [19], to obtain the dense features F xXWxC
Together with the semantic embeddings A extracted from the
textual encoder of CLIP, we use the proposed semantic-driven
distillation to transfer CLIP’s strong vision-language matching
capabilities to the segmentation model. To further enhance
the utilization of the less-dominant classes, we propose the
region-aware self training strategy. Given C, we feed it to
the mask generation module proposed by CLIP-ZSS [7] to
obtain M, and find potential classes in different areas. We
also feed the pixel-level prediction PV **W obtained by the
inner product between F and A. Then we feed P and M to
the region-aware pseudo label generation module to produce
the pseudo labels for the unseen classes Y,, and add the given
seen labels together as the final pseudo labels Y. Finally, we
use the pseudo labels to supervise the segmentation model.
The details of SDD and RST are illustrated in Sec. III-A and
the Sec. III-B, respectilvely.

A. Semantic-driven Distillation (SDD)

The core idea of Semantic-Driven Distillation (SDD) is
to fully leverage CLIP’s well-structured semantic embedding



space as an intermediate bridge between the dense visual fea-
tures extracted by the segmentation model and the CLS token
from the CLIP visual encoder. This design enables the transfer
of CLIP’s powerful vision-language alignment capabilities into
the segmentation model, enhancing its semantic consistency
and generalization to unseen classes. To enable this idea, we
propose a knowledge transfer module as shown in Fig. 3.
Given an input image X, we feed it into both a segmentation
model (e.g., SegFormer) and the frozen CLIP visual encoder
to obtain two sets of features: (1) the dense feature map
F ¢ REXWXC from the segmentation model, and (2) the
CLS token representation C € R(H+L)XC from CLIP, which
contains a global CLS token and patch-level representations.
We denote the global CLS token as C;, € R and the
dense patch tokens as C4 € REXC. To establish a semantic
connection between the segmentation model and CLIP, we
feed F and C to the knowledge transfer module. This module
first computes the similarity between the segmentation model’s
dense features F and the global CLS token C,. Specifically,
we apply a scaled dot-product attention followed by a softmax

-
W = Softmax Cg\/ﬁF where W € [0, 1]"*(H*W) denotes

the normalized attention weights indicating the contribution
of each spatial location to the global semantic representation.
Using the attention weights W, we aggregate the dense fea-
tures to obtain a global feature F, € RI*C: F,=W- F'.

To distill CLIP’s semantic knowledge into the segmentation
model, we apply the distribution alignment. Specifically, we
compute the semantic distributions over class prototypes using
both the CLIP CLS token and the predicted F,. Given the
semantic embedding matrix A € RV*® (e.g., from the CLIP
text encoder), we calculate the similarity logits and normalize
them using a softmax with temperature scaling:

AT F,AT
S > , Dy = Softmax < g ) , (D
Te Tf

where 7. and 77 are temperature hyperparameters that con-
trol the confidence (sharpness) of the resulting distributions.
Finally, to enforce that the segmentation model’s aggregated
features F, reflect the same semantic distribution as the CLIP
CLS token, we minimize the Kullback-Leibler divergence
between the two:

D. = Softmax (

Lsa = KL(Dy [ D), 2)
which guides the segmentation model in capturing the se-
mantic richness encoded in CLIP’s global representation and
aligning its predictions accordingly.

This semantic-level supervision provides an efficient way to
inject vision-language knowledge into dense prediction mod-
els, even when textual annotations are sparse or only weakly
available. Moreover, the use of semantic embeddings as a
bridge allows SDD to naturally handle both seen and unseen
classes during zero-shot or open-vocabulary segmentation.

Algorithm 1: Region-aware Self Training (RST)

Input: Dense feature map Cg,
Seen label map Y,
Seen class embeddings Ag,
Unseen class embeddings A,,,
Sliding window sizes KC,
Top-K% threshold K
Output: Supervision label Y
Step 1: Potential Class Region Mining
Initialize region feature set C < 0 ;
foreach k € K do
foreach position (i,7) € Q, do
Extract k x k region centered at (¢, j) from Cy ;
Mask out pixels where Y[u,v] € Ay ;
Compute average feature over valid pixels,
append to C ;

R N R N

8 Apply K-means clustering on C and generate region
masks M € RUXHXW .

9 Step 2: Region-aware Pseudo Label Generation
10 Compute model feature map F ;

11 Compute unseen class scores: P, = FA;r ;
12 Initialize i(u +—0;

13 foreach region m € M do

14 Select top-K % pixels in m based on max score in
P, ;

15 Assign class label via arg max over P, to selected
pixels ;

16 Combine S?u with seen labels Y, to obtain Y ;
17 return Y

B. Region-aware Self Training (RST)

Another challenge in conventional zero-shot semantic seg-
mentation is the ineffective utilization of less-dominant classes
during self-training, which leads to sub-optimal performance
for these classes. To address this issue, we propose Region-
aware Self-Training (RST), which includes two key steps:
(1) potential class region mining and (2) region-aware pseudo
label generation.

To mine potential class regions, we follow the procedure
proposed in CLIP-ZSS [7]. Given the dense visual features Cy
from the CLIP visual encoder, we first initialize cluster seeds
by applying multi-scale sliding windows over C; to form a
region-level feature set Cj, that emphasizes potential unseen
classes. Specifically, for each window of size k x k centered
at position (i, j), we compute the average of features excluding
those belonging to seen classes A, based on the seen ground-

truth labels Y,:
1 itk—1j+k—1
Cr = 7. . Z Z 1(Y5[u7 ] ¢ AS) ~Calu, 0] | (4,7) € U
LIl =i v=j
3)

Q= {(i,4) | .5 €{0,[%],....[Ha—Fk]}}

“4)



TABLE I

COMPARISON WITH PREVIOUS METHODS. BOLD DENOTES THE BEST PERFORMANCE, AND UNDERLINE DENOTES THE SECOND BEST PERFORMANCE.

Models | pubtisn | Backbone \ COCO-Stuff \ PASCAL Context
| | |  hloU sloU uloU | hloU sloU uloU
SPNet+ST [36] CVPRI19 30.3 34.6 26.9 - - -
ZS5 [4] NeurIPS19 16.2 34.9 10.6 234 27.0 20.7
CaGNet+ST [38] MM20 19.5 35.6 13.4 - - -
STRICT [11] CVPR21 ResNet101 [37] 34.8 353 303 - - -
FreeSeg [39] CVPR23 453 42.2 49.1 - - -
MaskCLIP+ [40] ECCV22 45.0 38.1 54.7 53.3 444 66.7
Zzseg [23] ECCV22 41.5 39.6 43.6 - - -
ZegCLIP+ST [6] CVPR23 ViT-B [41] 485 40.7 59.9 54.0 472 63.2
CLIP-RC+ST [8] CVPR24 49.7 42.0 60.8 55.1 48.1 63.2
Ours ) ViT-B [41] 51.9 44.5 62.2 57.4 52.8 63.0
urs Segformer-B4 [19] 51.3 44.1 61.3 60.3 53.2 69.7
where {2 denotes the set of valid sliding positions for kernel TABLE II

size k € K, and Z;; is the number of valid (unmasked)
pixels in the (4, j)-th window. C4 represents the CLIP dense
feature map (excluding the CLS token), and 1(-) is an indicator
function used to exclude pixels associated with seen classes.
After computing Cj, we apply K-means clustering followed
by mask merging [7] to obtain the mask set M € RU>HxW
where U denotes the number of potential unseen classes. Each
binary mask in M corresponds to a candidate object region in
the unannotated areas.

Next, we apply region-aware pseudo label generation. For-
mally, we compute class scores for unseen classes as P, =
FAI , where F is the visual feature map from the segmentation
model, and A, € R¥+*C denotes the semantic embeddings
for unseen classes where IN,, indicates the number of unseen
classes. For each region in M, we select the top-K % most
confident predictions to form the region-aware pseudo labels
Y... These are then combined with the seen ground-truth labels
Y, to construct the final supervision mask Y for training the
segmentation model.

Training Loss. The final segmentation loss is computed as:

LPY) = Log(P,Y) 4+ As - Loaa(M7,Y). (5)

where P = FA' indicates the pixel-level prediction. L.
indicates the linear combination of cross-entropy and focal
loss [42].

Inference. Since the vision-language matching capability has
already been transferred from CLIP to the backbone during
training, the model no longer requires CLIP visual encoder
at inference time. The backbone has effectively learned to
align dense visual features with text embeddings, enabling
efficient zero-shot inference without additional computational
overhead.

IV. EXPERIMENTS

A. Experimental Setup

Datasets. To evaluate the effectiveness of our method, we
conduct zero-shot semantic segmentation (ZSS) experiments
on two representative benchmarks: COCO-Stuff [43] and

ABLATION ON PROPOSED METHODS WHERE B INDICATES THE BASELINE
METHODS (SEGFORMER-B4).

Methods hloU sloU uloU

B 58.0 52.6 64.5

B + SDD 59.3 534 66.9

B + SDD + RST 60.3 53.2 69.7
TABLE III

COMPARISON ON ST vSs. RST WHERE B INDICATES THE BASELINE
METHODS (SEGFORMER-B4)

Methods hloU sloU uloU
B + ST 58.2 53.1 64.5
B + RST 60.4 53.4 69.5

PASCAL Context [44]. The seen/unseen category splits fol-
low the standard protocol used in previous works [6]. COCO-
Stuff contains a total of 171 semantic classes, which are
divided into 156 seen and 15 unseen classes. The training set
consists of 118,287 images, while the test set contains 5,000
images. PASCAL Context includes 4,996 training images and
5,104 testing images. For ZSS, 59 classes are selected, with
49 used as seen classes and 10 as unseen.

Implementation Details. The proposed methods are imple-
mented on the MMsegmentation. The CLIP model applied in
our method is based on the ViT-B/16 model and the channel
of the output text features is 512. All the experiments are
conducted on 4 Nvidia A6000 GPUs and the batch size is
set to 16 for all three datasets. For both datasets, the size of
the input images is set as 512 x 512. The iterations are set
to 40K and 80K for PASCAL Context and COCO-Stuff. The
optimizer is set to AdamW with the default training schedule.
For all the datasets, in the first half of the training, we do
not apply the RST, and in the rest of the iterations, we apply
RST. To evaluate the performance of both seen and unseen
classes, we apply the harmonic mean IoU (hloU) following
previous works [6]. The relationship between mloU and hloU
is hloU = ZsloliuloU \here sJoU and uloU indicate the

sloU+uloU .
mloU of the seen classes and unseen classes, respectively.
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Besides the hloU, sIoU and uloU are also applied. For RST,
K is set as 75.

B. Experiment Results

Comparison with State-of-the-Art Methods. Table I com-
pares our method with existing state-of-the-art zero-shot se-
mantic segmentation (ZSS). Our method achieves the best
hlIoU and uloU on COCO-Stuff, outperforming all previous
methods. Specifically, with a ViT-B backbone, we obtain 51.9
hloU and 62.2 uloU, surpassing the previous best (CLIP-
RC+ST) by +2.0 and +1.4 respectively. This demonstrates the
superior generalization ability of our method to unseen classes.
Even when using a different backbone (Segformer-B4), our
method still achieves competitive performance (51.3 hloU,
61.3 uloU), confirming its robustness across architectures. On

PASCAL Context, our method again sets a new state-of-the-
art. With the Segformer-B4 backbone, it achieves 60.3 hloU,
53.2 sloU, and 69.7 uloU, exceeding previous top-performing
methods (e.g., MaskCLIP+ [40], ZegCLIP+ST [6], CLIP-
RC+ST [8]). Notably, we observe significant improvements
in uloU over prior works, indicating that our approach more
effectively utilizes unseen class semantics.

Ablation Studies. In the ablation studies, we choose
segformer-b4 [19] as the segmentation model and report the
performance on Pascal Context [44]. Ablation Study. As
shown in Table II, we conduct an ablation study to evaluate
the effectiveness of the proposed Semantic-Driven Distillation
(SDD) and Region-aware Self-Training (RST). Starting from
the baseline model (B), which does not apply any self-training,
the introduction of SDD alone brings consistent improvement



TABLE IV
ABLATION STUDIES OF K IN RST

K in RST hloU sloU uloU

50 57.6 53.0 63.2

75 60.4 534 69.5

90 41.2 53.3 33.6

TABLE V
ABLATION STUDIES OF Tf AND 7 IN SDD

Tf Te |  hloU sloU uloU
0.01 0.01 58.0 52.6 64.5
0.05 0.05 59.3 534 66.9
0.07 0.07 52.6 53.2 52.0
0.07 0.05 54.9 53.1 56.9
0.05 0.05 47.7 53.1 43.3
0.05 0.01 60.0 52.6 69.7
0.07 0.01 60.3 53.2 69.7

across all metrics, boosting hloU from 58.0 to 59.3 and
uloU from 64.5 to 66.9. When further integrating RST, the
performance improves significantly, achieving 60.3 hloU, 53.2
sloU, and 69.7 uloU, which confirms the complementary
benefits of SDD and RST.

Comparison with Standard Self-Training. In Table III, we
compare our RST with conventional self-training (ST). While
ST already provides a slight gain over the baseline, our RST
achieves superior results on all metrics, particularly in unseen
category performance, increasing uloU from 64.5 to 69.5.
This highlights the effectiveness of region-level pseudo label
generation in discovering less dominant classes.

Effect of the Hyperparameter K in RST. We further
analyze the impact of the selection ratio K used in RST
(Table IV). Setting K = 75 yields the best performance,
achieving the highest hloU (60.4) and uloU (69.5). A smaller
value (e.g., K = 50) under-selects high-quality predictions,
while a larger value (e.g., K = 90) introduces noisy labels,
which significantly degrades performance. This indicates that
a proper balance between confidence and coverage is critical
for effective pseudo-labeling.

Effect of the Hyperparameter 7; and 7. in SDD. Table
V presents an ablation study on the hyperparameters 7 and
T, in the SDD module. These parameters control thresholds
for feature and class-level filtering, respectively. The results
show that setting 7y = 0.07 and 7. = 0.01 achieves the best
overall performance, with the highest hloU (60.3) and uloU
(69.7). This suggests that a stricter feature-level threshold com-
bined with a more permissive class threshold leads to better
generalization to unseen classes. On the other hand, setting
both thresholds equally high or low degrades performance,
indicating the importance of balancing selectivity between
feature and class levels.

Qualitative Analysis. Figure 4 shows qualitative comparisons
with ZegCLIP on unseen classes. Our method produces more
coherent and accurate segmentation, correctly identifying fine-
grained regions such as the elephant, person, and orange. In

contrast, ZegCLIP yields fragmented or misclassified regions,
highlighting the advantage of our semantic-guided framework.

V. CONCLUSION

Intelligent Transportation Systems (ITS) require robust se-
mantic segmentation to accurately recognize both common
and rare objects for safe decision-making. However, conven-
tional models often struggle with unseen classes that were
not annotated during training, limiting their applicability in
dynamic real-world scenarios. To address this challenge, we
presented Semantic-Driven Distillation (SDD) and Region-
aware Self-Training (RST), aiming to enhance the zero-shot
semantic segmentation (ZSS) capability by fully leveraging
the rich semantic information encoded in CLIP. Our approach
aligns dense feature distributions and refines pseudo labels at
the region level, significantly improving the model’s ability
to generalize to unseen categories without relying on labeled
examples. Extensive experiments on standard ZSS benchmarks
demonstrate that our method consistently outperforms existing
approaches. We believe that our work not only advances open-
world segmentation research but also contributes to building
reliable and generalizable perception systems for practical ITS
and other safety-critical applications.
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