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Split Matching for Inductive Zero-shot
Semantic Segmentation
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Abstract

Zero-shot Semantic Segmentation (ZSS) targets the segmentation of unseen classes,
i.e., classes not annotated during training. While fine-tuned vision-language models show
promise, they often overfit to seen classes due to the lack of supervision. Query-based
methods offer strong potential by enabling object localization without explicit labels,
but conventional approaches assume full supervision and thus tend to misclassify unseen
classes as background in ZSS settings. To address this issue, we propose Split Matching
(SM), a novel assignment strategy that decouples Hungarian matching into two compo-
nents: one for seen classes in annotated regions and another for latent classes in unan-
notated regions (referred to as unseen candidates). Specifically, we split the queries into
seen and candidate queries, enabling each to be optimized independently according to its
available supervision. To discover unseen candidates, we cluster CLIP dense features to
generate pseudo masks and extract region-level embeddings using CLS tokens. Matching
is then conducted separately for the two groups based on both class and mask similarity.
Additionally, we introduce a Multi-scale Feature Enhancement (MFE) module that re-
fines decoder features through residual multi-scale aggregation, improving the model’s
ability to capture spatial details across resolutions. Besides, we also introduce a Random
Query (RQ) strategy to further enhance the performance after training. Our method is
the first to introduce decoupled Hungarian matching under the inductive ZSS setting, and
achieves 0.8% and 1.1% higher hIoU on two ZSS benchmarks.

1 Introduction
Semantic segmentation [7, 8, 10, 11, 24, 36] serves as a fundamental task for computer
vision. Existing approaches can be broadly classified into feature-based and query-based
methods. Feature-based [7, 8, 24] methods treat semantic segmentation as a per-pixel clas-
sification problem, where dense features extracted from the backbone are directly finetuned
for pixel-wise label prediction. In contrast, query-based segmentors [10, 11] employ a set
of discrete, learnable vectors, referred to as queries, to jointly predict class labels and class-
agnostic masks. These queries are passed through a transformer decoder to produce class
scores and interact with dense backbone features to generate the corresponding masks.

However, achieving high performance in semantic segmentation typically requires large-
scale datasets with pixel-level annotations [13], which are costly to obtain. To reduce anno-
tation demands, Zero-shot Semantic Segmentation (ZSS) [2, 5, 6, 38] has emerged, aiming
to segment unseen classes which are not annotated during training but must be segmented at
test time, by transferring knowledge from seen classes, i.e., classes with available training
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Figure 1: Comparisons between existing query-based segmentation models that fail to match
the unseen candidates and the proposed split matching.

annotations. Recent advances in Vision-Language Models (VLMs) [26, 35] drives ZSS by
enabling the transfer of vision-language alignment to segmentation tasks [14, 19, 38]. Exist-
ing methods typically adapt CLIP via adapters [21] or prompts [22] to handle seen classes,
while relying on CLIP’s generalization ability for unseen ones. However, such strategies
typically rely on CLIP’s zero-shot capability for unseen classes without additional training
signals, which leads to overfitting to seen classes and poor generalization on unseen classes.

To mitigate overfitting to seen classes, we explore query-based segmentation as a more
effective solution. Unlike feature-based methods that classify pixels independently, query-
based approaches treat each object as a learnable query and perform mask-level classifi-
cation, enabling better object-level reasoning and localization without explicit supervision.
However, despite their ability to localize potential objects, existing query-based methods
struggle in ZSS. Without annotations for unseen classes during training, queries for novel
objects are often misclassified as seen classes or background. As shown on the left of Fig. 1,
this matching imbalance biases the model toward seen classes and prevents it from learn-
ing useful representations for unseen ones, thus limiting the full potential of query-based
segmentation in ZSS.

To enable query-based method to segment unseen classes, we propose Split Matching
(SM). Specifically, we divide the queries into two groups: seen queries, which segment
annotated seen classes, and candidate queries, which target latent classes in unannotated
regions (referred to as unseen candidates). We first apply multi-scale K-Means clustering [5]
on CLIP dense features to generate pseudo masks that localize unseen candidates. The cor-
responding image patches are then cropped and fed into the frozen CLIP visual encoder to
obtain CLS tokens, which are subsequently fused with semantic embeddings to form joint
class embedding. We compute class similarity between the joint embeddings and query pre-
dictions, and measure mask similarity using the pseudo masks. Hungarian matching is then
applied separately to the seen and candidate queries based on the combined similarities. To
better support queries in capturing semantic cues at different scales, we introduce a Multi-
scale Feature Enhancement (MFE) module. It enhances the visual feature with multi-scale
context and applies spatial normalization, refining the transformer decoder’s key and value
through residual multi-scale aggregation. Moreover, we introduce a Random Query (RQ)
strategy that injects a few newly initialized, untrained queries during inference, alongside
the trained seen and candidate queries. This increases the density of queries in the feature
space and helps discover unseen classes more effectively.

Different from existing methods that rely on dense features extracted from CLIP [5, 38]
and struggle to optimize unannotated regions due to the absence of explicit supervision, our
method introduces Split Matching (SM), which separates queries into seen and candidate
groups, enabling targeted label assignment even in unannotated areas. This design effectively
mitigates the common issue of misclassifying unseen objects as background, a key limitation
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of prior methods. Moreover, unlike open-vocabulary segmentation approaches [32, 34] that
perform Hungarian matching with fully annotated data, our method operates entirely under
the zero-shot setting, without requiring any pixel-level labels for unseen classes. To the
best of our knowledge, we are the first to explicitly separate seen and candidate queries via
Hungarian matching under the inductive ZSS. To summarize, our contributions are:

• We propose Split Matching (SM), a novel query-based assignment framework for zero-
shot segmentation. SM explicitly separates seen and unseen queries and matches them inde-
pendently using pseudo masks derived from CLIP dense features.

• We introduce a Multi-scale Feature Enhancement (MFE) module, which enriches de-
coder features via residual multi-scale fusion. Additionally, we propose a Random Query
(RQ) strategy that increases query density at inference time to uncover more latent objects.

• Our method achieves 0.8% and 1.1% higher hIoU on PASCAL VOC and COCO-Stuff
benchmarks under the zero-shot setting.

2 Related Works
Semantic Segmentation assigns a class label to each pixel in an image. Traditional CNN-
based methods [8, 9, 24] enhance per-pixel classification through dilated convolutions and
multi-scale context aggregation but struggle to capture long-range dependencies. With the
rise of Vision Transformers [15], encoder-based models [18, 30] have shown strong capa-
bilities in modeling global context. Inspired by DETR [4], query-based frameworks such as
MaskFormer [10] and Mask2Former [11] reformulate segmentation as set prediction using
object queries and Hungarian matching. Although these models achieve impressive results
under full supervision, they are not directly applicable to zero-shot segmentation (ZSS) due
to their reliance on complete annotations and inherent bias toward seen classes. To address
this, we propose Split Matching, the first method to explicitly separate seen and candidate
queries under the inductive ZSS setting. By decoupling the matching process for annotated
and unannotated regions, our approach enables targeted supervision and significantly im-
proves generalization to unseen classes, even in the absence of pixel-level annotations.
Zero-shot and Open-Vocabulary Segmentation. Although semantic segmentation has
made remarkable progress, it still relies heavily on large-scale pixel-level annotations, which
are expensive and time-consuming to obtain. To alleviate this, two related directions have
emerged: zero-shot segmentation (ZSS) [5, 6, 14, 19, 33, 38] and open-vocabulary segmen-
tation (OVS) [27, 32, 34, 37]. Both paradigms aim to improve generalization by leveraging
large-scale vision-language models such as CLIP [26], either by introducing lightweight
adapters [21, 25] or designing task-specific visual prompts [22]. Despite this shared goal,
their setups differ fundamentally. ZSS is defined under a partially labeled training regime,
where only a subset of classes is annotated and the rest are marked as ignored. Evalua-
tion is conducted on the same domain, including both seen and unseen classes. OVS, on
the other hand, assumes access to fully labeled training data and evaluates on datasets with
novel classes and distribution shifts. While OVS benefits from full supervision and can lever-
age existing segmentation architectures, ZSS faces the challenge of incomplete supervision.
Unannotated regions corresponding to unseen classes are often treated as background dur-
ing training, making it difficult for models to learn discriminative representations for unseen
concepts. To tackle this issue, we propose Split Matching (SM), a label assignment strategy
tailored for query-based models in the zero-shot setting. SM dynamically aligns predicted
queries with pseudo labels derived from external vision-language features, enabling the dis-
covery of unseen objects even in the absence of ground-truth annotations.
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Figure 2: Training pipline overview of the proposed method. During training, input images
are fed into a trainable backbone to extract dense features F, while a frozen CLIP encoder
provides CLIP features. These are used to generate class embeddings Cu and pseudo masks
Yp for both seen and unseen classes. The dense features serve as keys and values in a trans-
former decoder, which interacts with queries Q to predict masks and query features. These
are aligned with pseudo masks via the Split Matching. A Multi-scale Feature Enhancement
module further refines F with auxiliary loss LMFE .

3 Methods

3.1 Preliminaries

Task Definition. ZSS aims to segment both seen and unseen classes without annotations
for unseen classes during training. Formally, let D = {Xi,Yi

s}M
i=1 represent a dataset of

images X and their pixel-level annotations Ys for seen classes, and M is the dataset size.
Additionally, let A ∈RN×C denote the semantic (text) embeddings of all classes, divided into
seen As ∈ RNs×C and unseen Au ∈ RNu×C, such that (As ∩Au =∅) and Ns +Nu = N where
C indicates the channel number and N is the number of classes in the dataset. Our method
applies the Inductive settings, where unseen embeddings Au are inaccessible during training
and evaluates model performance on seen and unseen classes during inference. Meanwhile,
all training images are preserved during training, and regions corresponding to unseen classes
are consistently labeled as “ignored”, ensuring that no unseen information is used.
Method Overview. Our core idea is to mitigate seen-class bias from incomplete annotations
by decoupling the optimization of seen and unannotated regions, allowing better discovery
of unseen classes without harming seen-class performance. As shown in Fig.2, we divide
the query space into seen queries Qs and candidate queries Qu, responsible for segmenting
annotated seen classes and unseen candidates, respectively. Given an input image, a trainable
backbone extracts dense features, which interact with a set of randomly initialized queries
through a transformer decoder. These queries are split into Qs and Qu, with the latter guided
by pseudo masks and class embeddings for unseen candidates Cu derived from a frozen CLIP
encoder. We then propose Split Matching (Sec.3.2) to assign labels to both query types via
similarity with model outputs, pseudo masks, and class embeddings. Additionally, a Multi-
scale Feature Enhancement module (Sec. 3.3) is introduced to refine backbone features,
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and a Random Query (RQ) strategy (Sec. 3.4) is introduced during inference.
Although our method utilizes features from unannotated regions, it strictly adheres to

the inductive zero-shot setting. At the beginning of training, all unannotated regions are
uniformly treated as ‘ignored’ without introducing any class-specific supervision or bias.
Unseen candidates are identified in a fully self-supervised manner, without any assumptions
regarding the number, identity, or distribution of unseen classes. As a result, the model re-
mains completely agnostic to unseen classes throughout the entire training process, ensuring
that no unseen-related information is leaked.

3.2 Split Matching (SM)
Hungarian matching requires splitting ground-truth into class labels and corresponding class-
agnostic masks, followed by assigning each ground-truth instance to a query based on simi-
larity. However, in ZSS, unannotated regions lack ground-truth labels, making it impossible
to directly apply Hungarian matching, which relies on full supervision. To overcome this,
Split Matching (SM) generates pseudo masks for latent classes in unannotated areas and
assigns them to candidate queries, while optimizing seen and candidate queries separately.

To generate the pseudo masks and their corresponding class embeddings for unseen can-
didates, we use the multi-scale K-means and mask fusion methods from CLIP-ZSS [5].
Specifically, given an image X, we feed it into a frozen CLIP visual encoder to obtain the
CLIP dense features O. Then, we compute the seed for K-means methods with

G =

{
i+s−1

∑
u=i

j+s−1

∑
v= j

O[u,v]
s2

∣∣∣∣∣ i ∈ I, j ∈ J

}
, (1)

where I = {0, [s/2], . . . , [H − s]} and J = {0, [s/2], . . . , [W − s]} are index sets, [·] denotes
rounding, and s ∈ S is the window size. After we obtain G, we merge the masks correspond-
ing to G by the mask fusion algorithm [5], which merge the semantically similar masks by
the cosine similarity among cluster centroids, to obtain pseudo label Yu ∈ [0,1]U×H×W for
unseen candidates where U indicates the number of unseen candidates. After obtaining Yu,
we use Yu to mask the input images X into Xm ∈ RU×3×H×W . Finally, we feed Xm into the
frozen CLIP visual encoder for Cu ∈ RU×C as class embeddings for unseen candidates.

After obtaining Yu and Cu, we apply split matching as illustrated in Fig. 3. Specifically,
we first feed the randomly initialized queries Q into a transformer decoder to obtain the
predictions for each query, denoted as P = {Ps,Pu}. Here, we denote the predictions for
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seen and candidate queries as Ps = {Vs,Ms} and Pu = {Vu,Mu}, respectively. Specifically,
Vs ∈ RKs×C and Ms ∈ RKs×H×W denote the features after transformer decoder and predicted
masks for the Ks seen queries. Similarly, Vu ∈ RKu×C and Mu ∈ RKu×H×W correspond to the
predictions for the Ku candidate queries. In both cases, the queries are projected into a C-
dimensional semantic space. Similar to the conventional hungarian matching, SM also needs
to compute the class similarity and mask similarity. For class similarity, we concatenate the
seen class embeddings As (extracted from the CLIP textual encoder) and candidate-class
embeddings Cu to form a joint class embedding E = cat(As,Cu) ∈ R(Ns+U)×C, where ‘cat’
denotes concatenation. Finally, we separately compute the similarity between the predictions
and joint class embeddings for seen and candidate queries, respectively. Ss = Sigmoid(Vs ·
E⊤),Su = Sigmoid(Vu ·E⊤). Then, for mask similarity, Ys and Yu are added to be the total
pseudo label Yp for the mask matching step. The mask similarities are then calculated by
comparing these predictions with Yp, Is =D(Ms,Yp),Iu =D(Mu,Yu) where D indicates the
function of calculating the similarity between predicted and pseudo masks, e.g., BCE loss.
Next, Hungarian matching is then performed independently for seen and candidate queries,
ensuring each query group is only matched to its corresponding classes.

σ
∗
s = argmin

Ks−1

∑
i=0

Lmatch(S
σ(i)
s ,Mσ(i)

s ,Ei,Yi
s), σ

∗
u = argmin

Ku−1

∑
i=0

Lmatch(S
σ(i)
u ,Mσ(i)

u ,Ei,Yi
u)

(2)
where Lmatch(Sσ ,Mσ ,E,Y) =Lcls(Sσ ,E)+Lmask(Iσ ,Y), consisting of Lcls and Lmask. The
classification loss Lcls implemented using focal loss, while the mask loss Lmask is computed
using the DICE loss. More details of Hungarian matching is shown in Supplementary
Materials. After computing σ∗

s and σ∗
u , we concatenate them into a unified assignment σ∗.

σ∗ is then used to optimize the matching loss L∗
match across all queries,

L∗
match(S,M,E,Y) = Lcls(Sσ∗

,E)+Lmask(Iσ∗
,Yp), (3)

where Sσ∗
and Iσ∗

are the classification scores and mask similarities after matching with the
optimal assignment σ∗. To enhance the discriminability of candidate queries, we introduce
a cosine similarity loss: Lcos = 1−cos(V′

u,Cu), where V′
u is the candidate queries which are

assigned with non-igored classes under σ∗
u , and cos(a,b) denotes cosine similarity. The final

loss for split matching is LSM = L∗
match +Lcos.

3.3 Multi-scale Feature Enhancement

Although SM facilitates the adaptation of query-based approaches to zero-shot segmenta-
tion, the key and value features in transformer decoders—responsible for associating queries
with relevant image regions—remain suboptimal. Due to the lack of further refinement, the
matching performance suffers, ultimately constraining the full potential of the model. To
tackle this issue, we propose an Multi-scale Feature Enhancement (MFE) module, as illus-
trated in Fig. 4, designed to assist in identifying the relevant regions by effectively combining
multi-scale features. The MFE leverages hierarchical features extracted by the pixel decoder
to provide a comprehensive representation, capturing both fine-grained and global contex-
tual information. The multi-scale outputs of the pixel decoder, F = {F0,F1,F2}, represent
features at finer resolutions, where F0 has the coarsest resolution and F2 the finest where
Fi ∈ RC×(H/r2−i)×(W/r2−i), with r denoting the scale factor.
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The fusion process begins by refining F0, the lowest-resolution feature map, through a
dense block consisting of a convolutional layer, group normalization [28], and a ReLU ac-
tivation function. This block enhances local spatial relationships and prepares the feature
map for integration with features at finer scales. The refined F0 is then resized to align with
the spatial dimensions of F1, which undergoes a similar refinement process. The refined F0
and F1 are fused via element-wise addition, combining detailed lowest-resolution features
with mid-level semantic information. This combined representation is resized again to match
the spatial dimensions of F2, the finest feature map in the hierarchy. Simultaneously, F2 is
processed through its own dense block to extract refined features. The previously fused rep-
resentation of F0 and F1 is then combined with the refined F2 to produce the final unified
feature map, Fd . This hierarchical fusion ensures that fine-grained details from the highest-
resolution features are effectively integrated with broader contextual cues. The final output,
Fd , leverages complementary information across scales to provide a rich, unified representa-
tion that allows queries to accurately identify relevant regions in the image. After obtaining
Fd , we optimize it through LMFE = Lce(Fd ,Yp)+L f ocal(Fd ,Yp) where Lce and L f ocal are
cross entropy and focal loss [23].

3.4 Training and Inference
The total loss is L= LSM +LMFE . During inference, we exclude the MFE module and uti-
lize only the backbone and transformer decoder and propose a Random Query (RQ) strategy.
Specifically, we feed the trained seen and candidate queries, along with new randomly ini-
tialized queries Qr, into the Transformer decoder. These queries collectively interact with
the visual features to generate segmentation masks, where the Qr serve to enrich query di-
versity and improve coverage of unannotated regions. Unlike the trained queries, Qr are not
supervised during training and are introduced only at inference time to probe unannotated
or ambiguous regions in the image. By increasing the density and diversity of queries in
the feature space, Qr enhance the model’s ability to explore underrepresented regions that
might correspond to unseen or latent objects. Importantly, Qr act as complementary probes
that are not biased by learned semantic categories, enabling the model to capture alternative
activation patterns and recover instances that trained queries might overlook. More detailed
inference process and the role of Qr are illustrated in the Supplementary Materials.

4 Experiments
Dataset. To assess the effectiveness of our proposed method, we conduct experiments on
the widely-used benchmark COCO-Stuff [3] and PASCAL VOC [16], focusing on the task
of zero-shot semantic segmentation (ZSS). We adopt the same seen and unseen class splits
as in prior works [14, 37, 38]. Specifically, COCO-Stuff consists of a total of 171 classes
with 156 seen and 15 unseen classes according to the standard protocol. The dataset includes
118,287 images for training and 5,000 images for testing. PASCAL VOC contains 10,582
images for training and 1,449 images for validation, including 15 seen and 5 unseen classes.
Implementation Details. The CLIP model applied in our method is based on the ViT-B/16
model, and the channel of the output text features is 512. All the experiments are conducted
on 8 V100 GPUs, and the batch size is set to 16 for both datasets. The iterations are set to
20K and 80K for PASCAL VOC and COCO-Stuff. Lcls in Lmatch is focal loss [23] and the
Lmask is a combination of IoU loss and DICE loss [11] in Lmatch. We choose Mask2Former

Citation
Citation
{Wu and He} 2018

Citation
Citation
{Lin, Goyal, Girshick, He, and Doll{á}r} 2017

Citation
Citation
{Caesar, Uijlings, and Ferrari} 2018

Citation
Citation
{Everingham, Eslami, Van~Gool, Williams, Winn, and Zisserman} 2015

Citation
Citation
{Ding, Xue, Xia, and Dai} 2022

Citation
Citation
{Zhou, Loy, and Dai} 2022

Citation
Citation
{Zhou, Lei, Zhang, Liu, and Liu} 2023

Citation
Citation
{Lin, Goyal, Girshick, He, and Doll{á}r} 2017

Citation
Citation
{Cheng, Misra, Schwing, Kirillov, and Girdhar} 2022



322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367

8AUTHOR(S): SPLIT MATCHING FOR INDUCTIVE ZERO-SHOT SEMANTIC SEGMENTATION

Models Backbone PASCAL VOC COCO-Stuff

hIoU sIoU uIoU hIoU sIoU uIoU

SPNet [29]

ResNet101 [20]

26.1 78.0 15.6 14.0 35.2 8.7
ZS3 [2] 28.7 77.3 17.7 15.0 34.7 9.5

CaGNet [17] 39.7 78.4 26.6 18.2 33.5 12.2
SIGN [12] 41.7 75.4 28.9 20.9 32.3 15.5
Joint [1] 45.9 77.7 32.5 - - -

ZegFormer [14] 73.3 86.4 63.6 34.8 36.6 33.2

Zzseg [31]

ViT-B [15]

77.5 83.5 72.5 37.8 39.3 36.3
DeOP [19] 80.8 88.2 74.6 38.2 38.0 38.4

ZegCLIP [38] 84.3 91.9 77.8 40.8 40.2 41.4
OTSeg [33] 84.5 92.1 78.1 41.4 41.4 41.4

Ours ResNet101 [20] 85.3 87.7 83.1 42.5 42.6 42.4

Table 1: Comparison with others. Bold and underline indicates the best and the second-best.

Method hIoU sIoU uIoU

Baseline 24.6 31.8 20.0
+ SM 33.3 36.4 30.8
+ SM + MFE 36.3 36.8 35.8
+ SM + MFE + RQ 36.6 36.8 36.4

Table 2: Ablation on the
proposed module.

Method hIoU sIoU uIoU

F 33.8 35.8 32.1
F + MLP 30.4 36.5 26.1
Cu 36.6 36.8 36.4

Table 3: Ablation on the candi-
date class embedding.

Structure of MFE hIoU sIoU uIoU

No Norm 35.8 36.2 35.3
BN 36.0 36.5 35.6
GN 36.6 36.8 36.4

Table 4: Ablation on the struc-
ture of MFE.

[11] with ResNet101 as the backbone with all other hyperparameters unchanged. 50 unseen
and 50 random queries are added during inference. We apply the harmonic mean IoU (hIoU)
following previous works [38] where hIoU = 2·sIoU ·uIoU

sIoU+uIoU as the metric where sIoU and uIoU
indicate the mIoU (mean intersection over union) of the seen classes and unseen classes,
respectively. More details are in the Supplementary Materials.

4.1 Comparison with State-of-the-art methods
Table 1 shows that our method achieves state-of-the-art performance under the ResNet101
backbone, outperforming even transformer-based methods in terms of overall hIoU and
uIoU. Specifically, we obtain the highest uIoU on PASCAL VOC (83.1%), which is a signifi-
cant margin over ZegCLIP (77.8%) and OT-Seg (78.1%), demonstrating stronger generaliza-
tion to unseen classes. Importantly, our method also achieves the best hIoU on both datasets,
indicating more balanced segmentation. Although our sIoU on VOC is slightly lower than
transformer-based counterparts, this reflects our model’s ability to mitigate seen-class bias.

4.2 Ablation Studies
To evaluate the effectiveness of our method, we conduct ablation studies on COCO-Stuff for
40K iterations using ResNet-50 as the backbone, with all hyperparameters unchanged. Ad-
ditional experiments are provided in the Supplementary Materials due to space limitations.
Ablations on Proposed Modules. Table 2 summarizes the contributions of each proposed
module. The baseline achieves suboptimal performance, with lower unseen IoU (uIoU) in-
dicating limited generalization. Adding the Split Matching (SM) module significantly im-
proves the model’s ability to capture unseen classes, as reflected in higher uIoU. The Multi-
scale Feature Enhancement (MFE) further boosts the model’s performance by enhancing the
interaction between queries and features. Finally, the inclusion of random queries leads to
the best results across all metrics, demonstrating our contribution.
Ablations on Unseen Class Embedding. Table 3 presents an ablation study on the design
of unseen class embeddings Cu. Using raw dense features F from the backbone provides
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Figure 5: Candidate query predictions visu-
alization, with each row displaying images,
GT, overall and candidate query predictions.
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Figure 6: Visualization on predictions where
each line shows the image, ground truth,
ZegCLIP’s prediction, and ours.

a reasonable baseline (uIoU: 32.1), while adding an MLP projection degrades performance,
likely due to semantic distortion. In contrast, using CLS tokens from pseudo-masked regions
yields the best results (uIoU: 36.4), suggesting that region-level CLS tokens better preserve
semantic alignment. This also enables direct concatenation with seen-class text embeddings,
maintaining cross-modal consistency without modality mismatch.
Ablations on structure of MFE. Table 4 presents the ablation study on the structure of
the MFE module by comparing different normalization strategies: No Normalization (No
Norm), Batch Normalization (BN), and Group Normalization (GN). Among the three, GN
achieves the best performance across all metrics, yielding the highest hIoU (36.6), sIoU
(36.8), and uIoU (36.4). These results demonstrate that incorporating Group Normalization
into MFE significantly improves both seen and unseen segmentation performance.

4.3 Qualitative Analysis
Due to the space limitations, more results are in Supplementary Materials.
Visualization of candidate queries. Fig. 5 visualizes the predictions of candidate queries.
Notably, these queries successfully activate on previously unannotated regions, enabling the
model to localize unseen classes such as carrot and cow. This demonstrates that candidate
queries can effectively discover latent classes and assign semantically correct class labels,
even without explicit supervision. Prediction Visualzation. Each row in Fig. 6 shows
the input image, ground truth, ZegCLIP’s prediction, and ours. Our method successfully
segments unseen classes such as “clouds”, “bushes”, and “playingfield”, which are missed
or mislabeled by ZegCLIP. Notably, in both examples, the unseen class “clouds” is correctly
identified by our model, demonstrating better generalization to unseen concepts.

5 Conclusion
In this paper, we propose Split Matching (SM), a novel decoupled assignment strategy tai-
lored for query-based models in ZSS. By separating queries into seen and candidate groups
and optimizing them with respect to annotated and unannotated regions, SM effectively mit-
igates the seen-class bias caused by incomplete supervision. To further facilitate the discov-
ery of unseen classes, we leverage CLIP-derived pseudo masks and region-level embeddings,
and introduce a Multi-scale Feature Enhancement (MFE) module to refine spatial repre-
sentations. Additionally, we incorporate a Random Query (RQ) strategy during inference
to improve query diversity and coverage of unannotated regions. Extensive experiments on
standard ZSS benchmarks demonstrate that our approach achieves state-of-the-art results.
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