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CLIP-to-Seg Distillation for Zero-shot Semantic Segmentation

Jialei Chen*, Student Member, IEEE, Zhenzhen Quan, Chenkai Zhang, Xu Zheng, Student Member, IEEE, Daisuke
Deguchi, Member, IEEE, Hiroshi Murase, Life Fellow, IEEE

Abstract—CLIP has greatly advanced zero-shot segmentation by
leveraging its strong visual-language association and generalization
capability. However, directly adapting CLIP for segmentation
often yields suboptimal results due to inconsistencies between
image and pixel-level prediction objectives. Additionally, merely
combining segmentation and CLIP models often leads to disjoint
optimization, introducing significant computational overhead and
additional parameters. To address these issues, we propose a
novel CLIP-to-Seg Distillation approach, incorporating global
and local distillation to flexibly transfer CLIP’s powerful zero-
shot generalization capability to existing closed-set segmentation
models. Global distillation leverages CLS tokens to condense
segmentation features and distills high-level concepts to the
segmentation model via image-level features. Local distillation
adapts CLIP’s local semantic transferability to dense prediction
tasks using object-level features, aided by pseudo-mask generation
for latent class mining. To further generalize the CLIP-distilled
segmentation model, we generate latent text embeddings for the
mined latent classes by coordinating their text embeddings and
dense features. Our method equips existing closed-set segmentation
models with strong generalization capabilities for open concepts
through effective and flexible CLIP-to-Seg distillation. Without
relying on the CLIP model or introducing extra inference
overhead, our method seamlessly integrates into existing closed-set
segmentation models and enables zero-shot capability, achieving
state-of-the-art performance on multiple benchmarks.

Index Terms—CLIP-to-Seg Distillation, Latent Class Mining,
Zero-shot Learning, Semantic Segmentation

I. INTRODUCTION

In recent years, semantic segmentation has advanced rapidly,
benefiting from deep learning technologies. However, con-
ventional semantic segmentation models are heavily data-
dependent [1-3], requiring large volumes of annotated images
to achieve satisfactory performance. Collecting these images
and annotations is both time-consuming and expensive.

To address this challenge, zero-shot semantic segmentation
has been proposed and has gained significant attention [4, 5].
In zero-shot semantic segmentation, models are trained on seen
classes and must generalize to unseen classes during inference,
relying solely on their text descriptions. To accomplish this, in-
spired by the works that adopt CLIP [6] to do downstream tasks
[7-9], existing methods [4, 5] typically utilize vision-language
models with strong zero-shot generalization capabilities, such
as CLIP [6], for pixel-level segmentation tasks.

To effectively adapt CLIP for segmentation, existing methods
can be categorized into two groups: one-stage methods and
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two-stage methods, as shown in (a) and (b) of Fig. 1. In one-
stage methods [5, 10—12], to maintain CLIP’s generalization
capability, the adaptation module or trainable prompts are often
inserted after the frozen CLIP visual encoder to adapt the dense
features for segmentation. Two-stage methods [4, 13] typically
require a pre-trained, class-agnostic object proposer to identify
latent classes (the classes without labels during training) in
an image. These proposals are then fed into the frozen CLIP
visual encoder for classification generalization.

Despite their effectiveness, both approaches exhibit inherent
limitations. In one-stage methods, CLIP is primarily optimized
for capturing global context through the CLS token, but it lacks
the spatial information required to capture fine-grained local
details necessary for precise segmentation. However, dense
prediction tasks prioritize high-quality pixel-level parsing over
image-level understanding, creating a mismatch between task
requirements and CLIP’s capabilities, thus limiting the effec-
tiveness of one-stage methods. Two-stage methods primarily
suffer from the disjointed optimization between mask proposal
generation and CLIP’s class recognition. Additionally, two-
stage methods are computationally expensive, as they require
both proposal generation and per-proposal classification.

To address the limitations of both approaches, we aim
to propose a novel framework that achieves high-quality
segmentation without incurring additional computational costs
during inference and simultaneously maintains strong zero-
shot generalization capabilities. We start by revisiting closed-
set segmentation models, which are highly optimized for
capturing local details crucial for precise segmentation while
achieving high inference speed. However, two key challenges
emerge in the context of zero-shot semantic segmentation.
First, incomplete annotations prevent the utilization of all the
information in an image and tend to bias the seen classes. Sec-
ond, transferring the vision-language matching capabilities to
closed-set segmentation models relies on knowledge distillation
techniques. Unfortunately, such approaches typically enforce
a consistent representation format, either spatially resolved or
non-spatially resolved (see (c) of Fig. 1), which limits the
ability to transfer CLIP’s knowledge from a single CLS token
to dense features within diverse segmentation architectures.

These limitations motivate us to propose CLIP-to-Seg (C2S)
distillation which is facilitated by a pseudo mask and latent
embedding generation. Different from image classification,
semantic segmentation requires both global and local infor-
mation for segmentation. Therefore, CLIP-to-Seg distillation
integrates global and local distillation to transfer CLIP’s zero-
shot generalization capabilities to the segmentation model as
shown in Fig. 1(d). Global distillation adaptively aggregates
dense features into one global feature based on their similarity
to global CLS tokens which are extracted from the whole image,
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Fig. 1: Comparisons between CLIP-to-Seg distillation and other methods. (a): Conventional one-stage zero-shot segmentation,
(b): Conventional two-stage zero-shot segmentation, where a proposer is trained and frozen CLIP is used to classify the
proposals. (¢): Conventional knowledge distillation methods require the student and teacher models to be of the same type. (d):
Our CLIP-to-Seg distillation transfers the knowledge of CLIP to segmentation models where features with different sizes are
aligned and do not rely on CLIP during inference, resulting in high inference performance and efficiency.

and then performs efficient distillation between the global CLS
token and the global feature. Local distillation aligns the CLIP
CLS tokens extracted from class-specific crops, consisting of
both seen and latent classes from the pseudo masks with the
dense features from the corresponding regions. Under zero-shot
settings, large amounts of areas are unannotated, leading to
sub-optimal local distillation. To leverage the information from
the entire image, we propose pseudo mask generation. This
method utilizes the K-means algorithm to cluster the CLIP
dense features from unannotated areas and further refines the
results by merging clusters that likely belong to the same class.
The merged results are added with the given seen labels to
form the pseudo masks. To further increase the capabilities to
distinguish between classes, we propose the latent embedding
generation to synthesize the text embeddings for the latent
classes. By concatenating with the seen text embeddings, these
latent embeddings help differentiate features from unannotated
areas and annotated areas, enabling further generalization for
the closed-set segmentation model.

Unlike existing approaches that adapt the CLIP visual
encoder [5, 11] or ensemble with CLIP during inference
[4, 10], our method can be seamlessly integrated into existing
closed-set segmentation models without relying on the CLIP
model or introducing additional computational parameters at
inference. Our method also effectively leverages the strengths
of powerful task-specific architectures. By decoupling from
the fixed CLIP backbone, our approach allows these closed-
set segmentation models to be adapted for zero-shot scenar-
ios, thereby significantly enhancing their applicability and
performance. Although global-local distillation is a common
practice in knowledge distillation [14, 15], our method differs
from existing approaches by transferring knowledge from
a single token, the CLS token from CLIP, to the dense
feature representations of the segmentation model. Our method
achieves state-of-the-art performance on multiple zero-shot

segmentation benchmarks when incorporated with powerful
segmentation models such as Segformer [16] and SegNeXt
[17]. In summary, our contributions are:

— We propose a novel CLIP-to-Seg distillation framework
that adopts a sparse-to-dense paradigm to transfer CLIP’s vision-
language matching capabilities to segmentation models.

— We propose a novel pseudo mask generation and latent
embedding generation to help the CLIP-distilled segmentation
model generalize well on unseen classes.

— Our method introduces no additional parameters or compu-
tational overhead, while being fully plug-and-play with existing
closed-set segmentation models for zero-shot capabilities,
achieving state-of-the-art performance on multiple benchmarks.

II. RELATED WORK

Closed-set Semantic Segmentation: Closed-set segmentation
assumes fully annotated images and focuses on the performance
of predefined categories within a specific dataset. Existing
methods are typically divided into pixel-level classification
and mask-level classification. In pixel-level classification,
FCN [18], the first fully convolutional network for end-to-
end semantic segmentation, established the paradigm. Since
FCN, many works, e.g., DeepLab series [19, 20], Deformable
convolution [21], aim to enlarge the receptive field to further
improve the performance of pixel-level methods. With the
introduction of ViT [22], many approaches [16, 17, 23]
replaced the conventional convolutional backbone with self-
attention-based models, achieving remarkable performance. An
alternative approach treats semantic segmentation as a mask
classification task. Mask2Former [24] and MaskFormer [25] are
notable examples of this approach. Specifically, these models
first generate queries corresponding to latent classes. These
queries are then decoupled to perform classification and mask
prediction tasks separately. Our method is applied to the more
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challenging task of zero-shot segmentation, which requires
fewer annotations than closed-set segmentation.

Knowledge Distillation: Knowledge distillation aims to trans-
fer the capability of a larger teacher model to a student model
for comparable performance to the teacher model with a
smaller model size [26]. Existing methods are categorized
into logits-based [27-29], feature-based [30, 31], and relation-
based approaches [14, 32]. With the rapid development of
vision-language models [6, 33, 34], certain methods aim to
distill vision-language matching capabilities into other models
[26, 30, 35]. Although global-local knowledge distillation has
been explored in prior works [14, 15], the novelty of our
approach lies in distilling knowledge from a single token,
namely, the CLS token from CLIP, into dense features of the
segmentation model. This contrasts with existing methods that
require both teacher and student to share the same feature
structure, i.e., either dense-to-dense or sparse-to-sparse.

Zero-shot Semantic Segmentation: Since closed-set segmen-
tation requires pixel-level annotations, research focusing on
reducing label dependency has gained significant attention.
Before the VLMs, e.g., CLIP, several works tried to bridge the
gap between vision and language by projecting the features
from vision models to the semantic space [36]. The emergence
of large-scale VLMs, such as CLIP [6], has revolutionized
zero-shot tasks. Due to their impressive zero-shot ability,
researchers aim to transfer this ability to downstream tasks.
Leveraging efficient tuning methods [37, 38], existing methods
are categorized into one-stage and two-stage approaches. One-
stage methods introduce trainable parameters or modules to
adapt VLMs for semantic segmentation [4, 5, 8, 9, 39-44].
Two-stage methods train a mask-proposer [24] to propose
objects in an image and utilize these objects to finetune the
VLMs or directly classify them [13, 41, 45, 46]. Besides
zero-shot semantic segmentation, open-vocabulary semantic
segmentation also aims to generalize to classes that do not
appear during training [47-51]. However, unlike zero-shot
methods that are trained on partially labeled data and aim to
discover unannotated categories within the same dataset, open-
vocabulary methods are trained on fully labeled datasets and
focus on transferring to new categories in different datasets.

Different from both types of CLIP-adapting paradigms
that rely heavily on CLIP during inference, we propose a
CLIP-to-Seg distillation method to transfer the vision-language
capability to any pixel-level segmentation model, enabling them
to employ zero-shot semantic segmentation without CLIP in
inference. Although some methods distill the text relationships
to the vision space [14, 26], their methods work under a relaxed
condition where all the text embeddings can be accessed.
Meanwhile, some object detection methods also try to distill the
knowledge from CLIP to detection models [52-55]. However,
their methods need to train an additional pseudo mask proposer
and provide a detailed description of the input image [52, 53] or
need to know all the names of classes [54, 55], which violates
the setting of zero-shot learning. Besides, some methods [56]
leverage CAM-based techniques to generate pseudo masks.
However, our method relies solely on clustering without prior
knowledge of the number or identity of the classes.

III. METHODS

Task Definition: We first define the task of Zero-shot Semantic
Segmentation (ZSS). Formally, let D = {Ii, Yi }j\il represent a
dataset, where I are the input images, Y are the corresponding
pixel-level annotations without the annotations of unseen
classes, and A € RY*P is a set of text embeddings for all
categories, with NV representing the total number of classes and
D the dimensionality of the embeddings. The text embeddings
A, derived from the CLIP text encoder by applying the
prompt template (e.g., “a photo of””) with the class name, are
partitioned into two disjoint subsets: seen class text embeddings
A, € RN-*D and unseen class text embeddings A, € RN=*D |
where A;, N A, = @ and N, + N, = N. Since seen
and unseen classes frequently co-occur in images, removing
those containing unseen categories is impractical for training.
Therefore, in ZSS, only the annotations for unseen classes are
removed. ZSS can be categorized into two settings based on
the availability of unseen class text embeddings A,: Inductive
ZSS, where unseen class text embeddings are unavailable
during training, and Transductive ZSS, where unseen class text
embeddings are accessible. In both settings, model performance
is jointly evaluated on both seen and unseen categories during
inference. In this work, we adopt our method for both settings.
As some of the annotations are removed and the names or
the number of these classes are unknown during training, we
define the classes in these areas as latent classes.

A. Basic Idea and Method Overview.

Semantic segmentation requires pixel-wise classification,
which differs from image classification which mainly relies on
global information. However, existing closed-set segmentation
models are limited by their fixed label space, making them
difficult to generalize to classes that may not appear in the
training dataset. To address this issue, we leverage the strong
vision language CLIP and distill its knowledge into segmen-
tation models. Unlike image classification, which only needs
global representations, semantic segmentation also demands
fine-grained local information. Thus, our knowledge distillation
framework consists of both global and local knowledge transfer,
and pixel-level supervision to enhance the segmentation:

Ereo{ £, (£.0/17.1) }

+ Erep g, { £ (010 1] 1Y) }
+Erv.eo{ LY || £1Y.) }

+ Ery.en, ¥, =M (D), Y=Y, + Y., {£:(f:(D,Y)}

where £, and £; represent the global and local knowledge
distillation losses, respectively. £, denotes the pixel-level loss
that supervises the prediction using pseudo masks Y, which
are composed of the provided seen labels Y and the generated
pseudo masks ?u for unannotated regions. f. and fs denote
the CLIP model and the segmentation model, respectively. I
denotes the input image, and Y, corresponds to the pixel-
level annotation mask. M indicates the functions to generate
pseudo masks for latent classes in the unannotated areas, and
Y, indicates the generated pseudo masks. To achieve this,
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Fig. 2: Overview of the CLIP-to-Seg distillation framework. First, the input image is passed through a frozen CLIP visual
encoder to obtain both global and local CLS tokens, as well as pseudo masks, which consist of the given seen labels and
generated masks for latent classes. The same image is then passed into a trainable segmentation model to extract dense features.
CLIP’s vision-language matching capabilities are transferred through the proposed CLIP-to-Seg distillation. To provide additional
supervision for latent classes, we propose a latent embedding generation method to synthesize text embeddings for latent classes.
During inference, our method does not introduce any additional modules or parameters to the segmentation model and relies
solely on the segmentation model, resulting in high inference efficiency. All text embeddings are derived from the CLIP text
encoder by applying a fixed prompt template (e.g., “a photo of a [class name]”) to each category.

we propose CLIP-to-Seg distillation, a simple yet effective
approach to generalizing any closed-set segmentation model to
classes that do not appear in the training. The core idea can be
concluded in Eq. 1. The first term distills global knowledge
from CLIP by aligning the global CLS token with all dense
features from the segmentation model. The second and third
terms focus on local knowledge distillation. However, under
zero-shot settings, many image regions remain unannotated,
making direct local supervision sub-optimal. To address this,
the second term mines latent classes from the unannotated
regions and aligns the corresponding local CLS tokens with
dense features extracted from these discovered regions. The
third term leverages seen-class annotations by masking the input
image accordingly and feeding it into the CLIP visual encoder,
extracting local CLS tokens and aligning them with the features
of the masked regions. Finally, the fourth term provides
pixel-wise supervision using both ground-truth masks for seen
classes and pseudo masks for unannotated regions. Each pixel
is treated as an individual prediction target, enabling the model
to learn fine-grained semantic distinctions. This supervision
can be implemented with standard pixel-level losses, such as
cross-entropy or focal loss, depending on the distribution and
confidence of the labels. The overview of our method is shown
in Fig. 2, we first generate pseudo masks for latent classes Y,
in unannotated regions by passing an input image through a
frozen CLIP visual encoder and clustering the output features
(M), as described in Sec. III-B. We then feed the same image
into the CLIP visual encoder and a trainable segmentation
model to obtain CLS tokens (including those for latent classes)
and dense features, serving as teacher and student features,
respectively. Next, we apply the proposed CLIP-to-Seg (C2S)
distillation between CLS tokens and dense features to transfer
CLIP’s knowledge to the segmentation model, as illustrated
in Sec. III-C (first, second, and third term in Eq. 1). However,

relying solely on C2S distillation may lead to suboptimal
performance as unannotated areas can not be fully utilized. To
address this, we use a latent embedding generation method
(Sec. III-D) to synthesize text embeddings for latent classes.
These synthetic text embeddings help distinguish latent from
seen classes, providing pixel-level supervision for unannotated
regions, aided by the pseudo masks (final term in Eq. 1).

B. Pseudo Mask Generation

In zero-shot settings, the annotations of unseen classes are
removed, making the input image not fully utilized. To address
this issue, we propose pseudo mask generation (M in Eq. 1)
to produce the labels that contain both the given seen labels
and the pseudo masks for latent classes. Given an input image,
we first feed the image into the frozen CLIP visual encoder
to obtain the dense features of CLIP C, (the output features
excluding the first CLS token). Then, we initialize seeds C;,,;;
by applying sliding windows of various sizes to average these
dense features:

CLSERLNe ,
Y %

u=1% v=j

Cinit = Ci=0 ’Lf Y, [’U/,’U] €A,

(2)
where [ = {0,[k/2],--- ,[Ha — K]}, J =
{0,[k/2],--- ,[Wq—k]}, [] denotes the rounding
operation where C; represents the CLIP visual
dense features. ¢ € {0,[k/2],[k],...,[Hq — k]} and
j € {0,[k/2],[k],...,[Wa — K]} denote the stride of the
sliding windows. k£ € K indicates the size of different sliding
windows. Here, H; and W, represent the size of Cg, and [-]
denotes the rounding operation. Based on C;,;;, we apply
K-Means clustering to the unannotated regions of C; and
obtain the clustering results M € RV *#*W and the updated
seed features S; € RV %P where U’ indicates the number
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Algorithm 1 Mask Merging Algorithm

1: Input: Clustered masks M € RUXHXW seed features
Sa € RV *P similarity threshold A
2: Output: Merged mask Y,

3. Initialize similarity matrix G < cos(Sgq, S, )
4: Set diagonal elements: G; ; - —oo, for all %
5: Initialize merged mask Y, @

6: gmax < max(Q)

7: while gn.x > A do

8: 1+ argmax(G)

9 I+ {j[Gl[i,j]>A}
10: qlmerged fﬁ ZjeI M [j]
11 Yy < Yy U{Mmerged}
122 G[Z,] < —o0; G[:,Z] ¢+ —o0
13:  gmax < max(G)

14: end while
15: return ?u

/I Index of the highest similarity
/[ Similar masks to be merged

of unique masks, and D is the number of channels. Finally,
we merge the clustering results as described in Algorithm 1.
Formally, the algorithm takes the S; and M as input. First,
we compute the similarity matrix G by computing the cosine
similarity among the updated seed features S,. It iteratively
selects the most similar pair of masks, determined by the
maximum similarity value g¢,,q, in G, and adds all masks
with similarity greater than A. The added mask is appended
to the result set Yu. Once a mask is added, its similarity
values in G are set to —oo to prevent selection next time.
This process continues until no similarity value exceeds the
threshold A, and the returned Yu will serve as the labels for
latent classes. Finally, we add the given seen labels Y, and
the generated labels for latent classes Y,, as the pseudo masks
Y. Moreover, without relying on annotations, the method
effectively discovers latent classes through distinct cluster
centers, as illustrated in Fig.6 in Sec.IV-D.

C. CLIP-to-Seg Distillation

The core idea of CLIP-to-Seg (C2S) distillation is to align
the CLS tokens that contain the vision-language matching

capabilities with the dense features from segmentation models.

The CLS tokens include two types: global CLS tokens, which
are extracted from the whole image, and local CLS tokens,
which are extracted from images masked by the labels. While
existing methods typically perform knowledge transfer in
a dense-to-dense [29, 30] or sparse-to-sparse [26] fashion,
our method uniquely operates in a sparse-to-dense manner,
where a single CLS token from the CLIP visual encoder is
utilized to transfer semantic knowledge to the dense features
of segmentation models. Before introducing the CLIP-to-Seg
distillation, we first introduce how the CLS token is extracted
as shown in the top of Fig. 3. To obtain the global CLS tokens
C, € R'XP we simply input the images into the CLIP visual
encoder. To obtain the local CLS tokens, we separate the pseudo
mask Y into non-overlapping class-specific masks which are

Token Generation Y

CLlP f

Visual !
Image Encoder _;_,(Q)
Maskmg )
Paeudo Mask{ Mot linges ’
@ ¢ /7 Latent Embedding Generation™ \
C, |
OF—— ‘ Concat —KandV__ R A
F F Transformer _; (0
@_ﬂ_, Mask _)m Decoder | (D0
t X i Latent
"1 Pool :
‘ ocling [ sEmbeddings

Pseudo Mask Y,

Fig. 3: The overview of token and latent embedding generation.

used to mask the input image I into class-specific masked

. H
images Il(U+O) X HXW ,

L=101Y=1), leY, (3)

where © indicates the per-pixel multiplication (image masking).
Each class-specific masked image I; is then passed through the
CLIP visual encoder to extract the corresponding local CLS
tokens C; € R(OTU)XD where O and U indicate the number
of seen and latent classes, respectively.

Once we obtain C,; and C;, we can apply the CLIP-to-
Seg distillation which consists of two components: global
distillation and local distillation. We first introduce global
distillation (the first term in Eq. 1), which transfers CLIP’s
knowledge by aligning global CLS tokens with the global
feature. Specifically, as illustrated in the top right of Fig. 4, the
input image is passed through a trainable segmentation model
to extract dense features FP*H XW, where H and W are the
height and width of the feature map, respectively. To compute
the global feature, F is reshaped to D x L, where L = H x W.
The similarity W between F and the global CLS token C,

a
is computed as W = Softmax(ch), where WXL ¢ [0,1],
and the softmax is applied along the second dimension of W.
W represents the similarities between the dense features of
the segmentation model and the CLS token, which includes
vision-language alignment capabilities. Higher similarity values
indicate that the dense features are more semantically aligned
with the object described by the CLS token. This similarity is
then used to weigh the contributions of each dense feature in
generating the global feature F,, where Fy = W - F'.

Inspired by the memory buffer mechanism in contrastive
learning, which provides additional negative pairs [57], we
introduce a CLS token bank to store CLS tokens generated
during previous iterations. Specifically, let V = {Cz}
represent the CLS token bank, where each C corresponds
to a CLS token collected from earlier trammg steps and B
indicates the size of the bank. In each iteration, before updating
the model parameters, we enqueue the current C, into V and
dequeue the oldest one. Finally, we align the global feature
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CLIP-to-Seg Distillation

4 Global Distillation ™
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Fig. 4: The process of CLIP-to-Seg distillation.

with the CLS token bank by InfoNCE [1],
eXP(FgTCg/ 7)
Ly= =5 T ’ @
> =0 exp(Fy C;)/7)
where C; € V, and 7 denotes the temperature used for
contrastive loss. However, due to CLIP’s focus on the global
context, it may overlook less prominent classes, failing to
transfer accurate semantics to the dense features associated
with them. To remedy this, we propose the local distillation
methods, as shown in the bottom of Fig. 4.

Local distillation (the second and third term in Eq. 1) seeks
to transfer semantics overlooked by the global CLS tokens to
their corresponding dense features by aligning local features
with the local CLS tokens C; as shown in the bottom of Fig.
4. Specifically, given the pseudo mask Y, we first mask the
dense features from these areas and average the class-specific
features to obtain the local features F; € R(O+U)*D.

F, = {ZH,W F[1(y; = 1)] yi € ?} 7

(&)

ZH,W[l(yi =1)]

where 1(y; = [) is an indicator function that selects pixels
belonging to class [. Finally, given C;, we apply InfoNCE [1]
to align the local features F; with the local CLS tokens C;,

O+U-1

>

=0

exp(f] ¢i/7)
O+U-1 )
2 =0 exp(f! ¢;)/7)
where f € F; and ¢ € C,;. By transferring CLIP’s knowledge

to segmentation models through C2S distillation, the model’s
generalization is improved, reducing overfitting to seen classes.

L=

(6)

D. Latent Embedding Generation

Although CLIP’s vision-language matching capabilities are
effectively transferred to segmentation models, the inaccessibil-
ity of unseen text embeddings leaves large portions of dense
features without pixel-level supervision, resulting in suboptimal
optimization of the segmentation model. To address this, we

propose latent embedding generation (the fourth term in Eq. 1),
which generates synthetic text embeddings for latent classes
by calibrating the local features with their corresponding local
CLS tokens, as shown in the bottom of Fig. 3.

After obtaining the generated mask for latent classes Y.,
we use Eq. 5 to replace Y with Y,, to generate local features
F, € RY*P for the latent classes. We then feed F, into
a transformer decoder as query and input the global and
local CLS tokens as key and value to generate the latent text
embeddings A/,. The transformer decoder is chosen because
the CLS token for latent classes, while possessing vision-
language matching capabilities, lacks the discriminative power
required for segmentation. Conversely, the local features F,, for
latent classes offer strong discriminative capabilities but lack
vision-language matching. The transformer decoder integrates
these complementary strengths, producing more representative
embeddings for latent classes. The generated text embeddings
Al are treated equivalently to seen text embeddings A, and
are used to serve as the classifier to distinguish between the
seen and latent classes. Formally, the class scores for seen and
latent categories are X, = o-F' -A, and X,, = - cos(F,A,),
where o and [ are hyperparameters that control the scale
of latent classes. Note that, since the generated labels f(u
and generated text embeddings A!, for latent classes are not
entirely precise, cosine similarity helps prevent overemphasis
on misclassification and aids in distinguishing between seen and
latent classes. We then concatenate the logits for both seen and
unseen classes as Xjgits = cat(Xy,X,) € RWs+U)xHxW,
where ‘cat’ denotes concatenation along the class dimension.
Finally, Y is used for pixel-level supervision (the fourth term
in Eq. 1) of the dense features by:

Es = ['focal (Xlogit37 Y) + Edice (Xlogit57 Y) + ‘Cce (Xlogits; Y) .

(N
where Lfocq1 refers to the focal loss [58], Lgic. indicates the
DICE loss [5], and L., denotes the cross-entropy loss. When
only seen classes are present in an image, latent generated
text embeddings will not be generated, and only seen text
embeddings are used for training.

In this method, semantics are implicitly leveraged through the
vision-language alignment previously established by the C2S
distillation. While the actual text embeddings for latent classes
are inaccessible, the model uses local visual features as a proxy
to generate pseudo-text embeddings via a transformer decoder.
These visual features, enhanced with local CLS tokens, serve to
bridge the semantic gap by approximating the structure of real
text embeddings. Thanks to the C2S-induced alignment, even
these visually derived embeddings retain semantic structure
aligned with CLIP’s space, enabling the model to separate
seen and latent semantics. Although not equivalent to pure text
embeddings, this design allows the model to distinguish latent
categories without requiring explicit textual supervision.

E. Training Objective and Inference
Training Objective: To recap, the training objectives of CLIP-
to-Seg distillation are:

L=Ly+ L+ Ls, ®)
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TABLE I: Comparison with state-of-the-art methods under inductive settings where bold and underline indicate the best and

the second-best performance.

| | PASCAL VOC | COCO-Stuff | PASCAL Context
Models Backbone
\ | hloU sloU uloU | hIoU sloU uloU | hIoU sloU uloU
SPNet [59] 26.1 78.0 15.6 14.0 35.2 8.7 - - -
7ZS3 [61] 28.7 71.3 17.7 15.0 34.7 9.5 15.8 20.8 12.7
CaGNet [36] 39.7 78.4 26.6 18.2 335 12.2 21.2 24.1 18.5
SIGN [62] ResNet101 [60] 417 75.4 28.9 20.9 323 15.5 - - -
Joint [63] 45.9 71.7 32.5 - - - 20.5 33.0 14.9
ZegFormer [4] 73.3 86.4 63.6 34.8 36.6 33.2 - - -
Zzseg [13] 77.5 83.5 72.5 37.8 39.3 36.3 - - -
ZegCLIP [5] 84.3 91.9 77.8 40.8 40.2 414 49.9 46.0 54.6
DeOP [10] ViT-B [22] 80.8 88.2 74.6 38.2 38.0 38.4 - - -
OTSeg+ [64] 87.1 93.3 81.6 41.5 41.3 41.8 57.7 55.2 60.4
CLIP-RC [11] 88.4 92.8 84.4 41.2 40.9 41.6 51.9 47.5 57.3
SegNeXt-B [17] 89.3 91.2 87.4 42.5 43.1 41.9 57.6 53.3 62.8
Ours Setr-B [23] 90.7 92.3 89.2 44.8 43.8 45.9 56.3 52.4 60.8
Segformer-B4 [16] 88.7 91.3 86.2 43.9 43.2 44.7 58.0 52.6 64.5
ViT-B [22] 90.7 92.1 89.4 432 43.6 42.8 57.1 51.9 63.5

TABLE II: Comparison with state-of-the-art methods under tranductive setting where bold and underline indicate the best and
the second-best performance, and ST indicates self-training [5, 64].

Models \ Backbone \ PASCAL VOC \ COCO-Stuff \ PASCAL Context

| | hloU sloU uloU | hloU sloU uloU | hloU sloU uloU

Zzseg + ST [13] 79.3 79.2 78.1 41.5 39.6 43.6 - - -
ZegCLIP + ST [5] 91.1 92.3 89.9 48.5 40.7 59.9 54.0 47.2 63.2

FreeSeg [43] ViT-B [22] 86.9 82.6 91.8 45.3 422 49.1 - - -
OTSeg+ ST [64] 94.4 94.3 94.3 49.8 41.4 62.6 59.8 54.0 67.0
CLIP-RC +ST [11] 93.0 93.9 9.2 49.7 42.0 60.8 55.1 48.1 64.5
SegNext-B [17] 89.5 91.0 88.0 48.5 437 545 60.5 54.0 68.7
Ours + ST Setr-B [23] 924 93.1 91.7 51.5 444 61.3 58.0 51.7 65.9
Segformer-B4 [16] 89.0 91.6 86.6 50.8 433 614 60.0 523 70.3
ViT-B [22] 91.0 92.1 89.9 50.1 43.4 59.2 58.1 52.2 65.6

TABLE III: Efficiency comparisons with other methods.

TABLE V: Ablations on global and local distillation.

Method Parameter | GFLOPS | FPS 1 Distillation ‘ hIoU SIoU uloU
ZegFormer [4] 60.3 M 1829.3 6.8

ZegCLIP [5] 13.8 M 61.1 25.6 - - 20.2 414 13.4

OTSeg+ [64] 13.8 M 61.9 22.5 - v 36.3 41.9 32.1

v - 40.8 41.6 40.1

Ours+SegNeXt [17] 32.0M 33.5 40.9 v v 42.3 41.9 42.7
Ours+SETR [23] 91.0 M 109.0 20.8

Ours+Segformer [16] 65.7 M 60.7 23.0 TABLE VI: Ablations on different distillations.

TABLE IV: Ablations on proposed modules by Segformer-B4.

Methods hIoU sloU uloU

baseline (Segformer-B4) 112 413 64
baseline + latent embedding 202 414 134
baseline + distillation 38.8 412 36.6

baseline + distillation + latent embedding 42.3 41.9 42.7

Inference: Since the vision-language matching capability
has already been transferred from CLIP to the backbone
during training, we do not rely on CLIP at inference. Instead,
we directly use the text embeddings from the text encoder
as classifier weights, eliminating the need for latent class
embeddings. Moreover, as the number of classes in a dataset
is fixed, the text embeddings can be precomputed offline,
introducing no additional computational overhead compared to
standard segmentation models under the closed-set setting and
methods that require additional adapters or visual prompts for

Distillation hloU sloU uloU
Cosine Similarity [65] 37.6 414 344
L2 Loss [66] 17.8 18.4 17.3
Froster [26] 37.2 41.7 33.6

Our distillation 42.3 41.9 42.7

adapting CLIP to ZSS, e.g., ZegCLIP [5].

IV. EXPERIMENTS AND DISCUSSIONS

Dataset: To evaluate the effectiveness of our method, we
select three representative benchmarks: PASCAL VOC [67],
COCO-Stuff [68], and PASCAL Context [69] to conduct our
experiments on zero-shot semantic segmentation (ZSS). The
split of seen and unseen categories follows the setting of the
previous works [5]. PASCAL VOC consists of 10,582 images
for training and 1,449 images for validation. Note that we
convert the ‘background’ category to the ‘ignored’. For this
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TABLE VII: Ablations on global and local CLS tokens in
latent embedding generation by Segformer-B4.

TABLE VIII: Ablation on latent embedding
calibrator by Segformer-B4.

and prototype

Calibration | hiou sloU uloU
global local |

- 38.8 412 36.6

- v 419 413 426

v - 417 414 42.1

v v 423 419 427

dataset, there are 15 seen categories and 5 unseen categories.
COCO-Stuff contains 171 categories totally. As in previous
settings, 171 categories are split into 156 seen and 15 unseen
categories. Besides, for the training dataset, there are 118,287
images and 5,000 images for testing. PASCAL Context includes
4,996 images for training and 5,104 images for testing. For
the zero-shot semantic segmentation task, the dataset is split
into 49 seen categories and 10 unseen categories.
Implementation Details: The proposed methods are imple-
mented on the MMsegmentation. The CLIP model applied in
our method is based on the ViT-B/16 model. All the experiments
are conducted on 8 V100 GPUs, and the batch size is set to
16 for all three datasets. For all three datasets, the size of the
input images is set as 512 x 512. The iterations are set to
20K, 40K, and 80K for PASCAL VOC, PASCAL Context,
and COCO-Stuff, respectively. The optimizer is set to AdamW
with the default training schedule. In addition, the size of
CLS token banks is set as 24. All other settings follow the
original segmentation models. To evaluate the performance of
both seen and unseen categories, we apply the harmonic mean
IoU (hIoU) following previous works [5]. The relationship
between mloU and hloU is hloU = % where sloU
and uloU indicate the mloU of the seen and unseen categories,
respectively. Besides the hloU, sloU and uloU are also
applied. Frames Per Second (FPS) is tested on RTX 3090.

A. Comparison with State-of-the-arts

We evaluate our method by distilling CLIP into three
representative closed-set segmentation models: SegNext, SETR,
and Segformer. As shown in Table I, our method consistently
outperforms existing state-of-the-art approaches across three
challenging benchmarks: PASCAL VOC, COCO-Stuff, and
PASCAL Context. For example, our method achieves significant
improvements in hloU over CLIP-RC and OTSeg+, with
margins of 2.3%, 3.3%, and 0.3% on the respective datasets.
These gains mainly stem from improved generalization to
unseen categories. On COCO-Stuff, our method obtains a
4.3% higher uloU than the best-performing baseline. Similar
trends can be observed across all datasets, indicating that our
model avoids overfitting to seen categories and better captures
transferable semantics. To further validate the robustness of
our approach, we also conduct experiments using ViT-B as the
backbone. As reported in the last row of Table I, our method
still achieves highly competitive performance, confirming its
effectiveness regardless of architecture.

Table II further compares our method under the inductive
setting with self-training (ST). Our method attains competitive
or superior results across all three benchmarks. Notably, we

Feature Calibrator | hIoU sloU uloU
Prototypes - 41.0 415 405
Prototypes MLP 415 413 418
CLS tokens - 402 415 389
CLS tokens MLP 40.9 415 403

Prototypes + CLS tokens Transformer | 42.3 41.9 42.7

achieve the best hloU and uloU on the PASCAL Context
dataset, indicating strong generalization under limited supervi-
sion. These results collectively demonstrate the advantage of
distilling vision-language knowledge into segmentation models
and confirm the broad applicability of our framework under
both standard and self-training settings.

We also provide a comparison of the computational cost and
efficiency of our method with previous methods as shown in
Table. III. We use a 512 x 512 image as input, compared with
the two-stage methods (first and second row in the table), our
method can achieve a much higher inference speed and much
lower GFLOPS. Compared with the methods that only add a
few trainable parameters, though our trainable parameters are
higher than theirs, our method has high flexibility based on the
segmentation model. For example, when we choose SegNeXt,
an efficient segmentation model, our GFLOPS are nearly 50%
of the SOTA one-stage methods, and achieve higher speed.

B. Ablation Studies

To evaluate the effectiveness of our method, we do ablation
studies on the COCO-Stuff dataset using 40K training iterations
with the same hyperparameters. Segformer-B4 is chosen
because of its balance in efficiency and performance. Despite
the shorter training schedule, the results also demonstrate the
effectiveness of our method.

Ablation studies on the proposed methods: Table IV
summarizes the ablation study of our proposed modules using
SegFormer-B4. Incorporating the latent embedding module
alone yields moderate gains (hloU from 11.2% to 20.2%,
uloU from 6.4% to 13.4%) by encouraging semantic expansion
beyond limited seen categories. However, without explicit
vision—language alignment, it struggles to substantially improve
generalization to unseen classes. In contrast, our CLIP-to-Seg
(C2S) distillation, although implemented with a single loss,
is deliberately designed to transfer CLIP’s vision—language
matching capability from a global token to dense features,
enabling pixel-level understanding rather than serving as a
simple auxiliary loss. This results in a dramatic boost in
zero-shot segmentation performance. When both modules
are combined, the model achieves the best overall results.
Remarkably, all results are obtained within 40K iterations, half
the standard budget, yet surpass prior state-of-the-art methods.
Ablation studies on global and local distillation: We
evaluate the individual and combined effects of global and
local distillation in Table V. Applying either global or local
distillation alone improves performance over the baseline, par-
ticularly on unseen classes (uloU), highlighting their individual
effectiveness. Notably, combining both strategies leads to the
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TABLE IX: Ablation studies TABLE X: Ablation studies on
the size of windows in pseudo
mask generation.

on the size of token banks.

Token bank size ‘ hloU sloU uloU
0 410 415 404 Window Size | hIoU sloU uloU
2 41.5 417 414 3 412 413 41.1
14 409 413 405 37 023 419 427

TABLE XI: Ablation studies
on the feature aggregation in
global distillation.

TABLE XII: Ablation studies on
other pseudo mask generation.

- Methods | GFLOPs|hIoU sloU uloU
Aggregation ‘ hloU sIoU uloU

Mask Proposal [13]] 17.6 |41.3 41.4 41.2

mean 384 411 359 Panoptic cut [48] | 165 |41.6 41.5 41.7

max 420 411 429 Ours 177|423 419 42.7
attention 423 419 427

best overall performance across all metrics, demonstrating
their complementary benefits in enhancing vision-language
alignment. In contrast, approaches lacking such alignment
struggle to generalize effectively to unseen categories.
Ablation studies on different distillations: We use contrastive
learning to distill the knowledge from CLIP in C2S distillation,
here, we try to use different distillation methods to prove the
effectiveness of our method as shown in Table VI. First, we
change the contrastive distillation to the cosine similarity and
find that though the sloU achieves similar performance, the
uloU drops to 34.4%. Then we change the cosine similarity
to the direct L2 loss between the CLS tokens and the global
features and find that both sloU and uloU drop drastically.
Finally, we apply the residual feature distillation proposed in
[26] and find that though a similar sIoU can be achieved, its
uloU is 9.1% lower than our method.

Ablation studies on the latent embedding generation: In this
experiment, we want to clarify the effectiveness of the CLS
tokens in the latent embedding generation as shown in Table
VII. First, we set the methods without latent embedding as the
baseline. Then we use only local CLS tokens to calibrate the
latent text embeddings and find that the hloU improves due to
the 6.0% improvements in uloU. Then, we only use the global
CLS tokens, we find that compared with local CLS tokens, the
hIoU drops 0.2% due to the uloU decrease.

Besides, we also conduct experiments on how to generate
the latent text embeddings as shown in Table VIII. First, we use
the local features F,, for latent classes directly as the latent text
embeddings without any generator. Compared with our method,
we find that the performance drops due to the uloU. Then,
we use an MLP as the generator to replace the transformer
decoder generator to evaluate if the interaction between the
dense features and the CLS tokens is important. We find that
compared with using only F,, the uloU increases but is still

lower than our method due to the lower IoU for unseen classes.

Next, we directly apply the local CLS token as the latent text
embeddings and find that the hloU drops drastically to 40.2%
from 42.3%, and adding an MLP can slightly increase the
performance. Compared with the transformer decoder which
combines the merits from the local features F,, and the CLS
token, all other methods achieve sub-optimal performance.

Ablation studies on the token bank size: Table IX presents the
ablation study on the impact of token bank size on segmentation

TABLE XIII: Experiments on the mask generation.

seen all

53.1 49.5

Classes |

mloU |

unseen

58.5

performance, measured by harmonic IoU (hloU), seen IoU
(sIoU), and unseen IoU (uloU). The experiments demonstrate
that the inclusion of a token bank significantly improves
performance compared to not using a token bank (size 0). The
optimal token bank size is found to be 6, achieving the highest
hloU (42.3%), sloU (41.9%), and uloU (42.7%). However,
increasing the token bank size beyond this optimal point (e.g.,
size 14) leads to a sub-optimal performance.

Ablation studies on the size of K-Means: Table X summarizes
the ablation study on the effect of window size K in mask
generation. When using a single window size, a larger window
(size 7) outperforms a smaller one (size 3), achieving 41.8%
hloU, 41.3% sloU, and 42.3% uloU. Notably, combining
multiple window sizes (3 and 7) yields the best performance
across all metrics, with 42.3% hloU, 41.9% sloU, and 42.7%
uloU. This result highlights the effectiveness of multi-scale
aggregation in capturing complementary spatial information,
which enhances the model’s segmentation capability.
Ablation studies on feature aggregation in global distillation:
Table XI shows an ablation study on feature aggregation
strategies, including mean pooling, max pooling, and attention-
based aggregation. Mean pooling performs the worst due to
over-smoothing, while max pooling improves performance by
emphasizing the strongest responses. Attention-based aggre-
gation achieves the best results (42.3% hloU, 41.9% sloU,
42.7% uloU) by dynamically aggregating features, effectively
balancing seen and unseen class contributions.

Comparison between other pseudo mask generation and
our method: Table XII demonstrates the effectiveness of our
pseudo mask generation strategy. Unlike prior methods relying
on latent class names [53-55], which violate the zero-shot
setting, our approach requires no class-specific information.
Compared to Mask Proposal and Panoptic Cut, our method
achieves the highest hloU with comparable GFLOPs, achieving
a strong balance between accuracy and efficiency.

C. Accuracy of the generated masks for latent classes

Readers may wonder if the generated masks are accurate
enough to serve as the pseudo masks for latent classes.
Therefore, we conduct an experiment on the VOC dataset
[67], which contains 20 classes. We first split the dataset into
seen classes (15 classes) and unseen classes (5 classes). Since
the generated masks lack class labels, we convert the ground
truth masks into binary masks. During evaluation, the generated
mask with the highest IoU is selected as the prediction. The
IoU metric is then used to assess the alignment between the
selected generated mask and the corresponding ground truth
mask. As shown in Table XIII, we evaluate the performance of
our method, which notably requires no training and relies
solely on clustering. When testing on unseen classes, our
approach achieves an impressive 58.5% mloU. Even for seen
classes, the mloU remains at 53.1%. Finally, when evaluated
across all classes, the mloU reaches 49.5%, demonstrating
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Seen 1 (Truck) | (Road) F % 5y e Il.U

06
0.4

02

0.0

Fig. 5: Similarities between the CLS tokens and dense features,
with the red star indicating seen classes and the red triangle
indicating latent classes.

Seen Label Unseen Label Seed 1

Image

Seed 2

Fig. 6: The visualization of pseudo masks for latent classes. For
different images, different classes can be found. The ‘seedl’
indicates the clustering results for the first seed.

the effectiveness of our clustering-based method in generating
high-quality masks without any training or fine-tuning.

D. Qualitative Analysis

The visualization of the similarity between CLS tokens and
dense features: We aim to determine whether the distillation
process can identify the representative regions. Therefore, we
visualize the similarities between the CLS tokens and the dense
features as shown in Fig. 5. First, we visualize the similarities
between the global CLS tokens and the dense features. We can
find that all the areas correspond to the global tokens. Then,
we obtain local CLS tokens for the seen areas, e.g., truck (top
middle) and house (bottom middle), and we can find that the
correspondences are also class-specific. Finally, we generate
pseudo masks for the unannotated areas, i.e., road (top right),
and tree (bottom right), and calculate their correspondence. We
can also achieve the expected results.

The roles of latent class mining: As shown in Fig. 6, this figure
highlights the capability of our approach to discover latent
classes. Specifically, the results depicted are obtained from
two images. Our approach can identify the meaningful objects
that are not annotated in the original dataset, demonstrating
its latent for discovering unseen or unannotated entities. For
instance, in the top of Fig. 6, the latent classes ‘tree’ and the
‘signs’ can be found by different seeds. Besides, in the bottom
of Fig. 6, the latent classes ‘tree’ and ‘cow’ can also be found,
indicating our effectiveness.

Qualitative Analysis of Each Module. Fig. 7 shows visual
comparisons demonstrate the contribution of each module.
Without global distillation, predictions become fragmented and
confuse unseen classes (e.g., cow vs. giraffe). Removing local
distillation causes semantic inconsistency within objects, while
omitting prototype calibration leads to imprecise boundaries.
In contrast, our full model produces accurate and consistent
segmentation, highlighting the effectiveness of all components.

10

No Global Distillation

No Local Distillation

Full Model

No Prototype Calibration
Fig. 7: The qualitative results of each module.

Failure cases: Fig. 9 shows representative failure cases of our
method. In the first row, the model misclassifies a concrete
as a common wall and confuses bed with carpet, indicating
difficulties in fine-grained object recognition under indoor
conditions. In the second row, the model fails to correctly
segment the tree and leaves. These results suggest that our
method still struggles with small object discrimination.

The visualization of prediction: We visualize the prediction of
our method as shown in Fig. 8. Compared with SOTA methods,
i.e., ZegCLIP [5], our method can obtain exceptional results
on both seen and unseen categories. For example, the ‘trees’ in
the fourth image are classified as another unseen class (road)
in ZegCLIP. However, our method can correctly recognize it.

E. Discussions

Discussion on CLIP-to-Seg Distillation: For global distillation,
our method relies solely on the CLS token representing the
entire image, rather than extracting CLS tokens for individual
regions [53]. Furthermore, our global distillation adopts a
whole-vision distillation approach and performs feature-level
aggregation instead of patch-level aggregation, which may
suffer from the size of patches and hurt the pixel-level
segmentation, compared to [70]. For local distillation, unlike
methods that focus exclusively on pulling positive pairs closer
[53], our approach also pushes negative pairs from different
classes further apart, ensuring more robust class separation.
The primary reason for selecting CLIP as teacher model is the
capability to perform vision-language matching, which helps
segmentation models generalize to classes that do not appear in
training. Besides, while other vision-foundation models, such as
SAM [71], excel at delineating object boundaries, they cannot
determine whether these segments belong to the same class
or tell what class it is. These limitations make other vision-
foundation models less suitable for semantic segmentation.
Discussion on Latent Embedding Generation: Readers may
be concerned about whether this method violates the zero-shot
setting. We argue that our method does not violate the zero-
shot setting for the following reasons. First, existing methods
such as [5, 11] also incorporate the loss from unannotated
areas by pushing the features in these areas away from seen
text embeddings. This ensures that features in unannotated
regions are less biased towards seen classes and enforces
that these features belong to unseen classes during inference.
Our approach achieves a similar goal but in a different
manner: instead of explicitly enforcing feature separation, we
leverage clustering to impose a self-organizing structure on
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Fig. 9: The qualitative results of failure cases.

Ours

unannotated regions. Importantly, this clustering process is
entirely unsupervised and does not utilize any labels from
unseen classes. The clustering of features is solely driven by
their feature similarity, without any guidance from class-level
text embeddings. Consequently, the clustering only influences
the spatial coherence of features within unannotated regions
rather than introducing information that could compromise
the zero-shot assumption. Second, we do not use unseen text
embeddings during training, and the latent text embeddings
merely come from visual features and serve as clustering
centers. These clustering centers change dynamically with
each image rather than remaining fixed like a classifier. They
are only used to group similar features together and do not
impose any fixed class labels, ensuring that the model does
not learn specific unseen categories during training.

V. CONCLUSION

In this paper, we propose the CLIP-to-Seg Distillation
framework to overcome the limitations of directly adapting
CLIP for segmentation tasks. Our approach integrates both
global and local distillation strategies to transfer CLIP’s zero-
shot generalization capabilities to closed-set segmentation
models. By aligning dense features from segmentation models
with CLS tokens from CLIP at both global and local levels,
we facilitate effective distillation from CLIP to pixel-level
segmentation models. Additionally, introducing synthesized
text embeddings for latent classes enhances the model’s ability
to generalize to new concepts. Without adding extra parameters
or computational overhead, our method achieves state-of-the-art
performance on zero-shot segmentation benchmarks, offering

11

Lo X278 Clouds "Treel| Grass | River Road Giraffe [Frisbee

Fig. 8: Visualization comparison between ZegCLIP and our methods.

a flexible and efficient solution to extend the generalization
capabilities of existing segmentation models.

Limitation and Future Works: Though effective, our method
still has some drawbacks. The pseudo masks and the text
embeddings for latent classes are not accurate enough, leading
to sub-optimal performance compared to the fully supervised
method. In the future, we aim to produce more accurate pseudo
masks and pseudo text embeddings.
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