

CLIP-to-Seg Distillation for Zero-shot Semantic Segmentation

Jialei Chen*, *Student Member, IEEE*, Zhenzhen Quan, Chenkai Zhang, Xu Zheng, *Student Member, IEEE*, Daisuke Deguchi, *Member, IEEE*, Hiroshi Murase, *Life Fellow, IEEE*

Abstract—CLIP has greatly advanced zero-shot segmentation by leveraging its strong visual-language association and generalization capability. However, directly adapting CLIP for segmentation often yields suboptimal results due to inconsistencies between image and pixel-level prediction objectives. Additionally, merely combining segmentation and CLIP models often leads to disjoint optimization, introducing significant computational overhead and additional parameters. To address these issues, we propose a novel CLIP-to-Seg Distillation approach, incorporating global and local distillation to flexibly transfer CLIP’s powerful zero-shot generalization capability to existing closed-set segmentation models. Global distillation leverages CLS tokens to condense segmentation features and distills high-level concepts to the segmentation model via image-level features. Local distillation adapts CLIP’s local semantic transferability to dense prediction tasks using object-level features, aided by pseudo-mask generation for latent class mining. To further generalize the CLIP-distilled segmentation model, we generate latent text embeddings for the mined latent classes by coordinating their text embeddings and dense features. Our method equips existing closed-set segmentation models with strong generalization capabilities for open concepts through effective and flexible CLIP-to-Seg distillation. **Without relying on the CLIP model or introducing extra inference overhead, our method seamlessly integrates into existing closed-set segmentation models and enables zero-shot capability, achieving state-of-the-art performance on multiple benchmarks.**

Index Terms—CLIP-to-Seg Distillation, Latent Class Mining, Zero-shot Learning, Semantic Segmentation

I. INTRODUCTION

In recent years, semantic segmentation has advanced rapidly, benefiting from deep learning technologies. However, conventional semantic segmentation models are heavily data-dependent [1–3], requiring large volumes of annotated images to achieve satisfactory performance. Collecting these images and annotations is both time-consuming and expensive.

To address this challenge, zero-shot semantic segmentation has been proposed and has gained significant attention [4, 5]. In zero-shot semantic segmentation, models are trained on seen classes and must generalize to unseen classes during inference, relying solely on their text descriptions. To accomplish this, inspired by the works that adopt CLIP [6] to do downstream tasks [7–9], existing methods [4, 5] typically utilize vision-language models with strong zero-shot generalization capabilities, such as CLIP [6], for pixel-level segmentation tasks.

To effectively adapt CLIP for segmentation, existing methods can be categorized into two groups: one-stage methods and

Jialei Chen, Chenkai Zhang, Daisuke Deguchi, Hiroshi Murase are with the Graduate School of Informatics, Nagoya University, Nagoya, Japan. Zhenzhen Quan is with the School of Information Science and Engineering, Shandong University, Qingdao, China. Xu Zheng is with AI Thrust, The Hong Kong University of Science and Technology, Guangzhou Campus (HKUST-GZ), Guangzhou, China. * indicates the corresponding author.

two-stage methods, as shown in (a) and (b) of Fig. 1. In one-stage methods [5, 10–12], to maintain CLIP’s generalization capability, the adaptation module or trainable prompts are often inserted after the frozen CLIP visual encoder to adapt the dense features for segmentation. Two-stage methods [4, 13] typically require a pre-trained, class-agnostic object proposer to identify latent classes (the classes without labels during training) in an image. These proposals are then fed into the frozen CLIP visual encoder for classification generalization.

Despite their effectiveness, both approaches exhibit inherent limitations. In one-stage methods, CLIP is primarily optimized for capturing global context through the CLS token, but it lacks the spatial information required to capture fine-grained local details necessary for precise segmentation. However, dense prediction tasks prioritize high-quality pixel-level parsing over image-level understanding, creating a mismatch between task requirements and CLIP’s capabilities, thus limiting the effectiveness of one-stage methods. Two-stage methods primarily suffer from the disjointed optimization between mask proposal generation and CLIP’s class recognition. Additionally, two-stage methods are computationally expensive, as they require both proposal generation and per-proposal classification.

To address the limitations of both approaches, we aim to propose a novel framework that achieves high-quality segmentation without incurring additional computational costs during inference and simultaneously maintains strong zero-shot generalization capabilities. We start by revisiting closed-set segmentation models, which are highly optimized for capturing local details crucial for precise segmentation while achieving high inference speed. However, two key challenges emerge in the context of zero-shot semantic segmentation. First, incomplete annotations prevent the utilization of all the information in an image and tend to bias the seen classes. Second, transferring the vision-language matching capabilities to closed-set segmentation models relies on knowledge distillation techniques. Unfortunately, such approaches typically enforce a consistent representation format, either spatially resolved or non-spatially resolved (see (c) of Fig. 1), which limits the ability to transfer CLIP’s knowledge from a single CLS token to dense features within diverse segmentation architectures.

These limitations motivate us to propose CLIP-to-Seg (C2S) distillation which is facilitated by a pseudo mask and latent embedding generation. Different from image classification, semantic segmentation requires both global and local information for segmentation. Therefore, CLIP-to-Seg distillation integrates global and local distillation to transfer CLIP’s zero-shot generalization capabilities to the segmentation model as shown in Fig. 1(d). Global distillation adaptively aggregates dense features into one global feature based on their similarity to global CLS tokens which are extracted from the whole image,

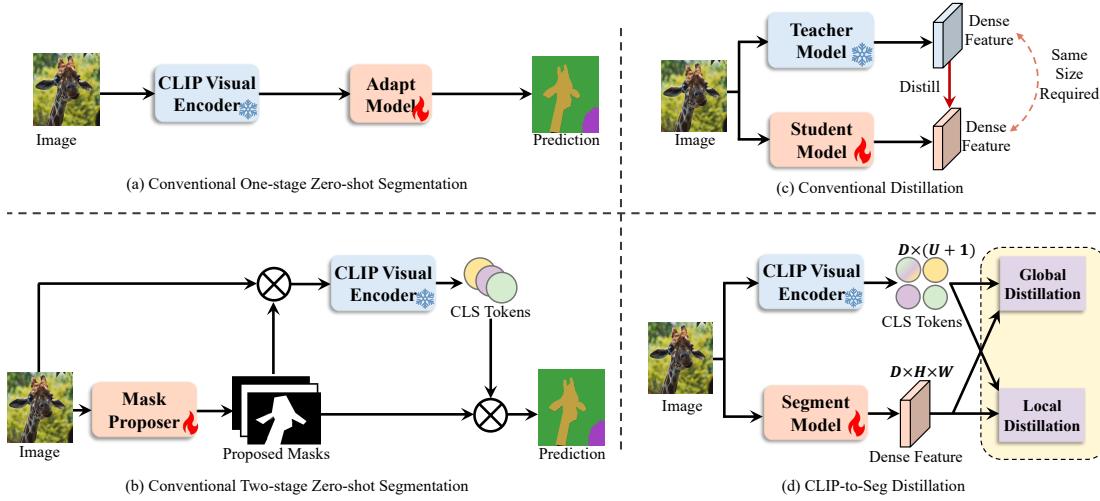


Fig. 1: Comparisons between CLIP-to-Seg distillation and other methods. (a): Conventional one-stage zero-shot segmentation, (b): Conventional two-stage zero-shot segmentation, where a proposer is trained and frozen CLIP is used to classify the proposals. (c): Conventional knowledge distillation methods require the student and teacher models to be of the same type. (d): Our CLIP-to-Seg distillation transfers the knowledge of CLIP to segmentation models where features with different sizes are aligned and do not rely on CLIP during inference, resulting in high inference performance and efficiency.

and then performs efficient distillation between the global CLS token and the global feature. Local distillation aligns the CLIP CLS tokens extracted from class-specific crops, consisting of both seen and latent classes from the pseudo masks with the dense features from the corresponding regions. Under zero-shot settings, large amounts of areas are unannotated, leading to sub-optimal local distillation. To leverage the information from the entire image, we propose pseudo mask generation. This method utilizes the K-means algorithm to cluster the CLIP dense features from unannotated areas and further refines the results by merging clusters that likely belong to the same class. The merged results are added with the given seen labels to form the pseudo masks. To further increase the capabilities to distinguish between classes, we propose the latent embedding generation to synthesize the text embeddings for the latent classes. By concatenating with the seen text embeddings, these latent embeddings help differentiate features from unannotated areas and annotated areas, enabling further generalization for the closed-set segmentation model.

Unlike existing approaches that adapt the CLIP visual encoder [5, 11] or ensemble with CLIP during inference [4, 10], our method can be seamlessly integrated into existing closed-set segmentation models without relying on the CLIP model or introducing additional computational parameters at inference. Our method also effectively leverages the strengths of powerful task-specific architectures. By decoupling from the fixed CLIP backbone, our approach allows these closed-set segmentation models to be adapted for zero-shot scenarios, thereby significantly enhancing their applicability and performance. Although global-local distillation is a common practice in knowledge distillation [14, 15], our method differs from existing approaches by transferring knowledge from a single token, the CLS token from CLIP, to the dense feature representations of the segmentation model. Our method achieves state-of-the-art performance on multiple zero-shot

segmentation benchmarks when incorporated with powerful segmentation models such as Segformer [16] and SegNeXt [17]. In summary, our contributions are:

– We propose a novel CLIP-to-Seg distillation framework that adopts a sparse-to-dense paradigm to transfer CLIP’s vision-language matching capabilities to segmentation models.

– We propose a novel pseudo mask generation and latent embedding generation to help the CLIP-distilled segmentation model generalize well on unseen classes.

– Our method introduces no additional parameters or computational overhead, while being fully plug-and-play with existing closed-set segmentation models for zero-shot capabilities, achieving state-of-the-art performance on multiple benchmarks.

II. RELATED WORK

Closed-set Semantic Segmentation: Closed-set segmentation assumes fully annotated images and focuses on the performance of predefined categories within a specific dataset. Existing methods are typically divided into pixel-level classification and mask-level classification. In pixel-level classification, FCN [18], the first fully convolutional network for end-to-end semantic segmentation, established the paradigm. Since FCN, many works, *e.g.*, DeepLab series [19, 20], Deformable convolution [21], aim to enlarge the receptive field to further improve the performance of pixel-level methods. With the introduction of ViT [22], many approaches [16, 17, 23] replaced the conventional convolutional backbone with self-attention-based models, achieving remarkable performance. An alternative approach treats semantic segmentation as a mask classification task. Mask2Former [24] and MaskFormer [25] are notable examples of this approach. Specifically, these models first generate queries corresponding to latent classes. These queries are then decoupled to perform classification and mask prediction tasks separately. Our method is applied to the more

165 challenging task of zero-shot segmentation, which requires
166 fewer annotations than closed-set segmentation.

167 **Knowledge Distillation:** Knowledge distillation aims to transfer
168 the capability of a larger teacher model to a student model
169 for comparable performance to the teacher model with a
170 smaller model size [26]. Existing methods are categorized
171 into logits-based [27–29], feature-based [30, 31], and relation-
172 based approaches [14, 32]. With the rapid development of
173 vision-language models [6, 33, 34], certain methods aim to
174 distill vision-language matching capabilities into other models
175 [26, 30, 35]. Although global-local knowledge distillation has
176 been explored in prior works [14, 15], the novelty of our
177 approach lies in distilling knowledge from a single token,
178 namely, the CLIP token from CLIP, into dense features of the
179 segmentation model. This contrasts with existing methods that
180 require both teacher and student to share the same feature
181 structure, *i.e.*, either dense-to-dense or sparse-to-sparse.

182 **Zero-shot Semantic Segmentation:** Since closed-set segmen-
183 tation requires pixel-level annotations, research focusing on
184 reducing label dependency has gained significant attention.
185 Before the VLMs, *e.g.*, CLIP, several works tried to bridge the
186 gap between vision and language by projecting the features
187 from vision models to the semantic space [36]. The emergence
188 of large-scale VLMs, such as CLIP [6], has revolutionized
189 zero-shot tasks. Due to their impressive zero-shot ability,
190 researchers aim to transfer this ability to downstream tasks.
191 Leveraging efficient tuning methods [37, 38], existing methods
192 are categorized into one-stage and two-stage approaches. One-
193 stage methods introduce trainable parameters or modules to
194 adapt VLMs for semantic segmentation [4, 5, 8, 9, 39–44]. Two-stage
195 methods train a mask-proposer [24] to propose objects in an image and utilize these objects to finetune the
196 VLMs or directly classify them [13, 41, 45, 46]. **Besides**
197 **zero-shot semantic segmentation, open-vocabulary semantic**
198 **segmentation also aims to generalize to classes that do not**
199 **appear during training [47–51]. However, unlike zero-shot**
200 **methods that are trained on partially labeled data and aim to**
201 **discover unannotated categories within the same dataset, open-**
202 **vocabulary methods are trained on fully labeled datasets and**
203 **focus on transferring to new categories in different datasets.**

205 Different from both types of CLIP-adapting paradigms
206 that rely heavily on CLIP during inference, we propose a
207 CLIP-to-Seg distillation method to transfer the vision-language
208 capability to any pixel-level segmentation model, enabling them
209 to employ zero-shot semantic segmentation without CLIP in
210 inference. Although some methods distill the text relationships
211 to the vision space [14, 26], their methods work under a relaxed
212 condition where all the text embeddings can be accessed.
213 **Meanwhile, some object detection methods also try to distill the**
214 **knowledge from CLIP to detection models [52–55]. However,**
215 **their methods need to train an additional pseudo mask proposer**
216 **and provide a detailed description of the input image [52, 53] or**
217 **need to know all the names of classes [54, 55], which violates**
218 **the setting of zero-shot learning.** Besides, some methods [56]
219 leverage CAM-based techniques to generate pseudo masks.
220 However, our method relies solely on clustering without prior
221 knowledge of the number or identity of the classes.

III. METHODS

222 **Task Definition:** We first define the task of Zero-shot Semantic
223 Segmentations (ZSS). Formally, let $\mathcal{D} = \{\mathbf{I}^i, \mathbf{Y}_s^i\}_{i=1}^M$ represent a
224 dataset, where \mathbf{I} are the input images, \mathbf{Y}_s are the corresponding
225 pixel-level annotations without the annotations of unseen
226 classes, and $\mathbf{A} \in \mathcal{R}^{N \times D}$ is a set of text embeddings for all
227 categories, with N representing the total number of classes and
228 D the dimensionality of the embeddings. The text embeddings
229 \mathbf{A} , derived from the CLIP text encoder by applying the
230 prompt template (*e.g.*, “a photo of”) with the class name, are
231 partitioned into two disjoint subsets: seen class text embeddings
232 $\mathbf{A}_s \in \mathcal{R}^{N_s \times D}$ and unseen class text embeddings $\mathbf{A}_u \in \mathcal{R}^{N_u \times D}$,
233 where $\mathbf{A}_s \cap \mathbf{A}_u = \emptyset$ and $N_s + N_u = N$. Since seen
234 and unseen classes frequently co-occur in images, removing
235 those containing unseen categories is impractical for training.
236 Therefore, in ZSS, only the annotations for unseen classes are
237 removed. ZSS can be categorized into two settings based on
238 the availability of unseen class text embeddings \mathbf{A}_u : *Inductive*
239 ZSS, where unseen class text embeddings are unavailable
240 during training, and *Transductive* ZSS, where unseen class text
241 embeddings are accessible. In both settings, model performance
242 is jointly evaluated on both seen and unseen categories during
243 inference. **In this work, we adopt our method for both settings.**
244 As some of the annotations are removed and the names or
245 the number of these classes are unknown during training, we
246 define the classes in these areas as latent classes.

A. Basic Idea and Method Overview.

248 Semantic segmentation requires pixel-wise classification,
249 which differs from image classification which mainly relies on
250 global information. However, existing closed-set segmentation
251 models are limited by their fixed label space, making them
252 difficult to generalize to classes that may not appear in the
253 training dataset. To address this issue, we leverage the strong
254 vision language CLIP and distill its knowledge into segmen-
255 tation models. Unlike image classification, which only needs
256 global representations, semantic segmentation also demands
257 fine-grained local information. Thus, our knowledge distillation
258 framework consists of both global and local knowledge transfer,
259 and pixel-level supervision to enhance the segmentation:

$$\begin{aligned} & \mathbb{E}_{\mathbf{I} \in \mathcal{D}} \left\{ \mathcal{L}_g \left(f_c(\mathbf{I}) \parallel f_s(\mathbf{I}) \right) \right\} \\ & + \mathbb{E}_{\mathbf{I} \in \mathcal{D}, \tilde{\mathbf{Y}}_u = M(I)} \left\{ \mathcal{L}_l \left(f_c(\mathbf{I}|\tilde{\mathbf{Y}}_u) \parallel f_s(\mathbf{I}|\tilde{\mathbf{Y}}_u) \right) \right\} \\ & + \mathbb{E}_{\mathbf{I}, \mathbf{Y}_s \in \mathcal{D}} \left\{ \mathcal{L}_l \left(f_c(\mathbf{I}|\mathbf{Y}_s) \parallel f_s(\mathbf{I}|\mathbf{Y}_s) \right) \right\} \\ & + \mathbb{E}_{\mathbf{I}, \mathbf{Y}_s \in \mathcal{D}, \tilde{\mathbf{Y}}_u = M(I), \tilde{\mathbf{Y}} = \mathbf{Y}_s + \tilde{\mathbf{Y}}_u} \left\{ \mathcal{L}_s \left(f_s(\mathbf{I}), \tilde{\mathbf{Y}} \right) \right\} \end{aligned} \quad (1)$$

260 where \mathcal{L}_g and \mathcal{L}_l represent the global and local knowledge
261 distillation losses, respectively. \mathcal{L}_s denotes the pixel-level loss
262 that supervises the prediction using pseudo masks $\tilde{\mathbf{Y}}$, which
263 are composed of the provided seen labels \mathbf{Y}_s and the generated
264 pseudo masks $\tilde{\mathbf{Y}}_u$ for unannotated regions. f_c and f_s denote
265 the CLIP model and the segmentation model, respectively. \mathbf{I}
266 denotes the input image, and \mathbf{Y}_s corresponds to the pixel-
267 level annotation mask. M indicates the functions to generate
268 pseudo masks for latent classes in the unannotated areas, and
269 $\tilde{\mathbf{Y}}_u$ indicates the generated pseudo masks. To achieve this,

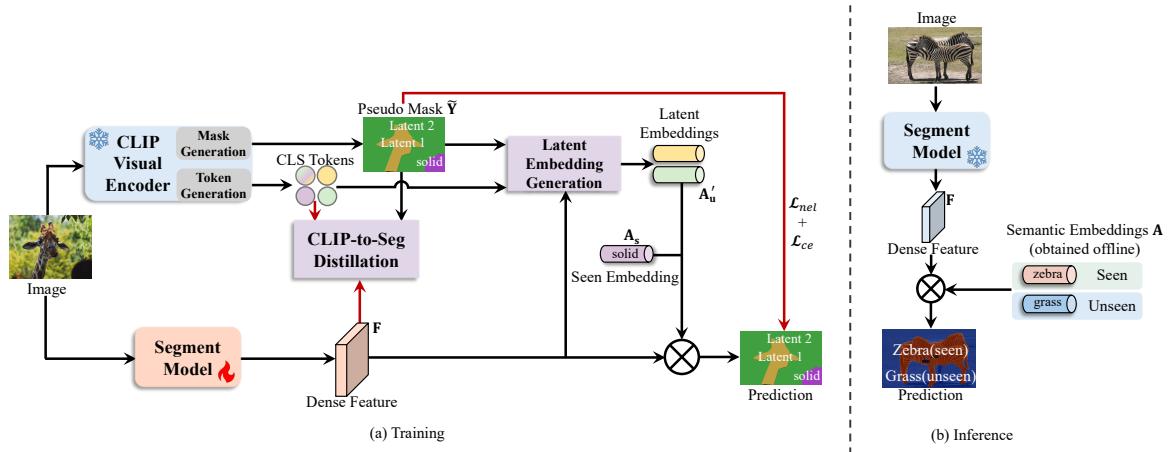


Fig. 2: Overview of the CLIP-to-Seg distillation framework. First, the input image is passed through a frozen CLIP visual encoder to obtain both global and local CLS tokens, as well as pseudo masks, which consist of the given seen labels and generated masks for latent classes. The same image is then passed into a trainable segmentation model to extract dense features. CLIP’s vision-language matching capabilities are transferred through the proposed CLIP-to-Seg distillation. To provide additional supervision for latent classes, we propose a latent embedding generation method to synthesize text embeddings for latent classes. During inference, our method does not introduce any additional modules or parameters to the segmentation model and relies solely on the segmentation model, resulting in high inference efficiency. **All text embeddings are derived from the CLIP text encoder by applying a fixed prompt template (e.g., “a photo of a [class name]”) to each category.**

we propose CLIP-to-Seg distillation, a simple yet effective approach to generalizing any closed-set segmentation model to classes that do not appear in the training. The core idea can be concluded in Eq. 1. **The first term** distills global knowledge from CLIP by aligning the global CLS token with all dense features from the segmentation model. **The second and third terms** focus on local knowledge distillation. However, under zero-shot settings, many image regions remain unannotated, making direct local supervision sub-optimal. To address this, the second term mines latent classes from the unannotated regions and aligns the corresponding local CLS tokens with dense features extracted from these discovered regions. The third term leverages seen-class annotations by masking the input image accordingly and feeding it into the CLIP visual encoder, extracting local CLS tokens and aligning them with the features of the masked regions. Finally, **the fourth term** provides pixel-wise supervision using both ground-truth masks for seen classes and pseudo masks for unannotated regions. Each pixel is treated as an individual prediction target, enabling the model to learn fine-grained semantic distinctions. This supervision can be implemented with standard pixel-level losses, such as cross-entropy or focal loss, depending on the distribution and confidence of the labels. The overview of our method is shown in Fig. 2, we first generate pseudo masks for latent classes \tilde{Y}_u in unannotated regions by passing an input image through a frozen CLIP visual encoder and clustering the output features (M), as described in Sec. III-B. We then feed the same image into the CLIP visual encoder and a trainable segmentation model to obtain CLS tokens (including those for latent classes) and dense features, serving as teacher and student features, respectively. Next, we apply the proposed CLIP-to-Seg (C2S) distillation between CLS tokens and dense features to transfer CLIP’s knowledge to the segmentation model, as illustrated in Sec. III-C (first, second, and third term in Eq. 1). However,

relying solely on C2S distillation may lead to suboptimal performance as unannotated areas can not be fully utilized. To address this, we use a latent embedding generation method (Sec. III-D) to synthesize text embeddings for latent classes. These synthetic text embeddings help distinguish latent from seen classes, providing pixel-level supervision for unannotated regions, aided by the pseudo masks (final term in Eq. 1).

B. Pseudo Mask Generation

In zero-shot settings, the annotations of unseen classes are removed, making the input image not fully utilized. To address this issue, we propose pseudo mask generation (M in Eq. 1) to produce the labels that contain both the given seen labels and the pseudo masks for latent classes. Given an input image, we first feed the image into the frozen CLIP visual encoder to obtain the dense features of CLIP C_d (the output features excluding the first CLS token). Then, we initialize seeds C_{init} by applying sliding windows of various sizes to average these dense features:

$$C_{init} = \left\{ \sum_{u=i}^{i+k-1} \sum_{v=j}^{j+k-1} \frac{C_d[u, v]}{k^2} \mid C_d = 0 \text{ if } Y_s[u, v] \in A_s \right\} \quad (2)$$

where $I = \{0, [k/2], \dots, [H_d - k]\}$, $J = \{0, [k/2], \dots, [W_d - k]\}$, $[\cdot]$ denotes the rounding operation where C_d represents the CLIP visual dense features. $i \in \{0, [k/2], [k], \dots, [H_d - k]\}$ and $j \in \{0, [k/2], [k], \dots, [W_d - k]\}$ denote the stride of the sliding windows. $k \in \mathbf{K}$ indicates the size of different sliding windows. Here, H_d and W_d represent the size of C_d , and $[\cdot]$ denotes the rounding operation. Based on C_{init} , we apply K-Means clustering to the unannotated regions of C_d and obtain the clustering results $M \in \mathbb{R}^{U' \times H \times W}$ and the updated seed features $S_d \in \mathbb{R}^{U' \times D}$ where U' indicates the number

Algorithm 1 Mask Merging Algorithm

```

1: Input: Clustered masks  $\mathcal{M} \in \mathbb{R}^{U' \times H \times W}$ , seed features
    $\mathbf{S}_d \in \mathbb{R}^{U' \times D}$ , similarity threshold  $\lambda$ 
2: Output: Merged mask  $\tilde{\mathbf{Y}}_u$ 
3: Initialize similarity matrix  $\mathbf{G} \leftarrow \cos(\mathbf{S}_d, \mathbf{S}_d^\top)$ 
4: Set diagonal elements:  $\mathbf{G}_{i,i} \leftarrow -\infty$ , for all  $i$ 
5: Initialize merged mask  $\tilde{\mathbf{Y}}_u \leftarrow \emptyset$ 
6:  $g_{\max} \leftarrow \max(\mathbf{G})$ 
7: while  $g_{\max} \geq \lambda$  do
8:    $i \leftarrow \arg \max(\mathbf{G})$  // Index of the highest similarity
9:    $\mathcal{I} \leftarrow \{j \mid \mathbf{G}[i,j] > \lambda\}$  // Similar masks to be merged
10:   $m_{\text{merged}} \leftarrow \sum_{j \in \mathcal{I}} \mathcal{M}[j]$ 
11:   $\tilde{\mathbf{Y}}_u \leftarrow \tilde{\mathbf{Y}}_u \cup \{m_{\text{merged}}\}$ 
12:   $\mathbf{G}[\mathcal{I},:] \leftarrow -\infty; \mathbf{G}[:,\mathcal{I}] \leftarrow -\infty$ 
13:   $g_{\max} \leftarrow \max(\mathbf{G})$ 
14: end while
15: return  $\tilde{\mathbf{Y}}_u$ 

```

334 of unique masks, and D is the number of channels. Finally,
 335 we merge the clustering results as described in Algorithm 1.
 336 Formally, the algorithm takes the \mathbf{S}_d and \mathcal{M} as input. First,
 337 we compute the similarity matrix \mathbf{G} by computing the cosine
 338 similarity among the updated seed features \mathbf{S}_d . It iteratively
 339 selects the most similar pair of masks, determined by the
 340 maximum similarity value g_{\max} in \mathbf{G} , and adds all masks
 341 with similarity greater than λ . The added mask is appended
 342 to the result set $\tilde{\mathbf{Y}}_u$. Once a mask is added, its similarity
 343 values in \mathbf{G} are set to $-\infty$ to prevent selection next time.
 344 This process continues until no similarity value exceeds the
 345 threshold λ , and the returned $\tilde{\mathbf{Y}}_u$ will serve as the labels for
 346 latent classes. Finally, we add the given seen labels \mathbf{Y}_s and
 347 the generated labels for latent classes $\tilde{\mathbf{Y}}_u$ as the pseudo masks
 348 $\tilde{\mathbf{Y}}$. **Moreover, without relying on annotations, the method**
 349 **effectively discovers latent classes through distinct cluster**
 350 **centers, as illustrated in Fig.6 in Sec.IV-D.**

351 **C. CLIP-to-Seg Distillation**

352 The core idea of CLIP-to-Seg (C2S) distillation is to align
 353 the CLS tokens that contain the vision-language matching
 354 capabilities with the dense features from segmentation models.
 355 The CLS tokens include two types: global CLS tokens, which
 356 are extracted from the whole image, and local CLS tokens,
 357 which are extracted from images masked by the labels. While
 358 existing methods typically perform knowledge transfer in
 359 a dense-to-dense [29, 30] or sparse-to-sparse [26] fashion,
 360 our method uniquely operates in a sparse-to-dense manner,
 361 where a single CLS token from the CLIP visual encoder is
 362 utilized to transfer semantic knowledge to the dense features
 363 of segmentation models. Before introducing the CLIP-to-Seg
 364 distillation, we first introduce how the CLS token is extracted
 365 as shown in the top of Fig. 3. To obtain the global CLS tokens
 366 $\mathbf{C}_g \in \mathbb{R}^{1 \times D}$, we simply input the images into the CLIP visual
 367 encoder. To obtain the local CLS tokens, we separate the pseudo
 368 mask $\tilde{\mathbf{Y}}$ into non-overlapping class-specific masks which are

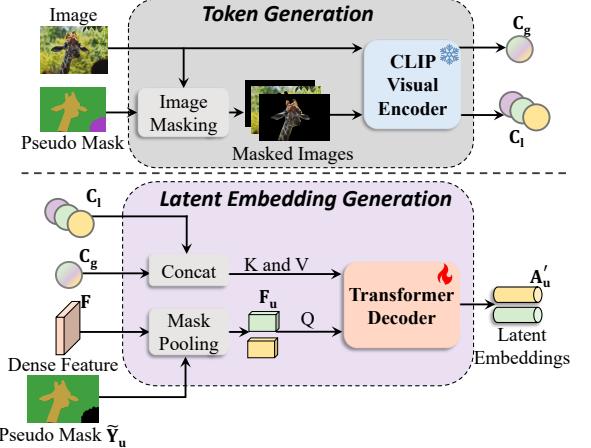


Fig. 3: The overview of token and latent embedding generation.

369 used to mask the input image \mathbf{I} into class-specific masked
 370 images $\mathbf{I}_l^{(U+O) \times H \times W}$,
 371

$$I_l = I \odot \mathbb{1}(\tilde{Y} = l), \quad l \in \tilde{Y}, \quad (3)$$

372 where \odot indicates the per-pixel multiplication (image masking).
 373 Each class-specific masked image \mathbf{I}_l is then passed through the
 374 CLIP visual encoder to extract the corresponding local CLS
 375 tokens $\mathbf{C}_l \in \mathbb{R}^{(O+U) \times D}$ where O and U indicate the number
 376 of seen and latent classes, respectively.
 377

378 Once we obtain \mathbf{C}_g and \mathbf{C}_l , we can apply the CLIP-to-
 379 Seg distillation which consists of two components: global
 380 distillation and local distillation. We first introduce global
 381 distillation (the first term in Eq. 1), which transfers CLIP's
 382 knowledge by aligning global CLS tokens with the global
 383 feature. Specifically, as illustrated in the top right of Fig. 4, the
 384 input image is passed through a trainable segmentation model
 385 to extract dense features $\mathbf{F}^{D \times H \times W}$, where H and W are the
 386 height and width of the feature map, respectively. To compute
 387 the global feature, \mathbf{F} is reshaped to $D \times L$, where $L = H \times W$.
 388 The similarity \mathbf{W} between \mathbf{F} and the global CLS token \mathbf{C}_g
 389 is computed as $\mathbf{W} = \text{Softmax}(\frac{\mathbf{C}_g^\top \mathbf{F}}{\sqrt{D}})$, where $\mathbf{W}^{1 \times L} \in [0, 1]$,
 390 and the softmax is applied along the second dimension of \mathbf{W} .
 391 \mathbf{W} represents the similarities between the dense features of
 392 the segmentation model and the CLS token, which includes
 393 vision-language alignment capabilities. Higher similarity values
 394 indicate that the dense features are more semantically aligned
 395 with the object described by the CLS token. This similarity is
 396 then used to weigh the contributions of each dense feature in
 397 generating the global feature \mathbf{F}_g , where $\mathbf{F}_g = \mathbf{W} \cdot \mathbf{F}^\top$.
 398

399 Inspired by the memory buffer mechanism in contrastive
 400 learning, which provides additional negative pairs [57], we
 401 introduce a CLS token bank to store CLS tokens generated
 402 during previous iterations. Specifically, let $\mathcal{V} = \{\mathbf{C}_g^i\}_{i=0}^B$
 403 represent the CLS token bank, where each \mathbf{C}_g^i corresponds
 404 to a CLS token collected from earlier training steps and B
 405 indicates the size of the bank. In each iteration, before updating
 406 the model parameters, we enqueue the current \mathbf{C}_g into \mathcal{V} and
 407 dequeue the oldest one. Finally, we align the global feature
 408

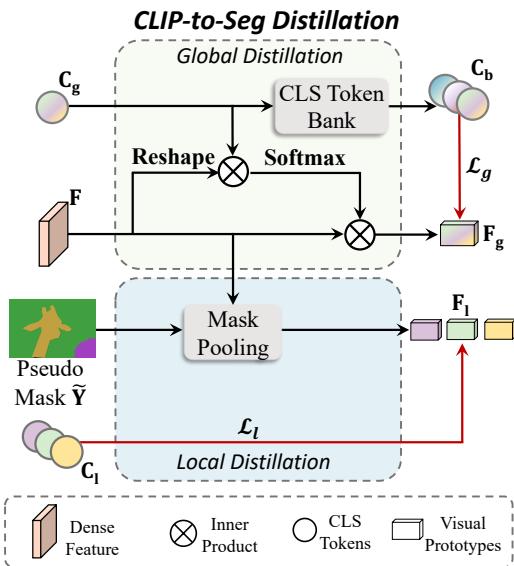


Fig. 4: The process of CLIP-to-Seg distillation.

405 with the CLS token bank by InfoNCE [1],

$$\mathcal{L}_g = \frac{\exp(\mathbf{F}_g^\top \mathbf{C}_g / \tau)}{\sum_{j=0}^B \exp(\mathbf{F}_g^\top \mathbf{C}_j / \tau)}, \quad (4)$$

406 where $\mathbf{C}_j \in \mathcal{V}$, and τ denotes the temperature used for
407 contrastive loss. However, due to CLIP's focus on the global
408 context, it may overlook less prominent classes, failing to
409 transfer accurate semantics to the dense features associated
410 with them. To remedy this, we propose the local distillation
411 methods, as shown in the bottom of Fig. 4.

412 Local distillation (the second and third term in Eq. 1) seeks
413 to transfer semantics overlooked by the global CLS tokens to
414 their corresponding dense features by aligning local features
415 with the local CLS tokens \mathbf{C}_l as shown in the bottom of Fig.
416 4. Specifically, given the pseudo mask $\tilde{\mathbf{Y}}$, we first mask the
417 dense features from these areas and average the class-specific
418 features to obtain the local features $\mathbf{F}_l \in \mathbb{R}^{(O+U) \times D}$:

$$\mathbf{F}_l = \left\{ \frac{\sum_{H,W} \mathbf{F}[\mathbb{1}(y_i = l)]}{\sum_{H,W} [\mathbb{1}(y_i = l)]} \mid y_i \in \tilde{\mathbf{Y}} \right\}, \quad (5)$$

419 where $\mathbb{1}(y_i = l)$ is an indicator function that selects pixels
420 belonging to class l . Finally, given \mathbf{C}_l , we apply InfoNCE [1]
421 to align the local features \mathbf{F}_l with the local CLS tokens \mathbf{C}_l ,

$$\mathcal{L}_l = \sum_{i=0}^{O+U-1} \frac{\exp(\mathbf{f}_i^\top \mathbf{c}_i / \tau)}{\sum_{j=0}^{O+U-1} \exp(\mathbf{f}_i^\top \mathbf{c}_j / \tau)}, \quad (6)$$

422 where $\mathbf{f} \in \mathbf{F}_l$ and $\mathbf{c} \in \mathbf{C}_l$. By transferring CLIP's knowledge
423 to segmentation models through C2S distillation, the model's
424 generalization is improved, reducing overfitting to seen classes.

D. Latent Embedding Generation

426 Although CLIP's vision-language matching capabilities are
427 effectively transferred to segmentation models, the inaccessibility
428 of unseen text embeddings leaves large portions of dense
429 features without pixel-level supervision, resulting in suboptimal
430 optimization of the segmentation model. To address this, we

431 propose latent embedding generation (the fourth term in Eq. 1),
432 which generates synthetic text embeddings for latent classes
433 by calibrating the local features with their corresponding local
434 CLS tokens, as shown in the bottom of Fig. 3.

435 After obtaining the generated mask for latent classes $\tilde{\mathbf{Y}}_u$,
436 we use Eq. 5 to replace $\tilde{\mathbf{Y}}$ with $\tilde{\mathbf{Y}}_u$ to generate local features
437 $\mathbf{F}_u \in \mathbb{R}^{U \times D}$ for the latent classes. We then feed \mathbf{F}_u into
438 a transformer decoder as query and input the global and
439 local CLS tokens as key and value to generate the latent text
440 embeddings \mathbf{A}'_u . The transformer decoder is chosen because
441 the CLS token for latent classes, while possessing vision-
442 language matching capabilities, lacks the discriminative power
443 required for segmentation. Conversely, the local features \mathbf{F}_u for
444 latent classes offer strong discriminative capabilities but lack
445 vision-language matching. The transformer decoder integrates
446 these complementary strengths, producing more representative
447 embeddings for latent classes. The generated text embeddings
448 \mathbf{A}'_u are treated equivalently to seen text embeddings \mathbf{A}_s and
449 are used to serve as the classifier to distinguish between the
450 seen and latent classes. Formally, the class scores for seen and
451 latent categories are $\mathbf{X}_s = \alpha \cdot \mathbf{F}^\top \cdot \mathbf{A}_s$ and $\mathbf{X}_u = \beta \cdot \cos(\mathbf{F}, \mathbf{A}'_u)$,
452 where α and β are hyperparameters that control the scale
453 of latent classes. Note that, since the generated labels $\tilde{\mathbf{Y}}_u$
454 and generated text embeddings \mathbf{A}'_u for latent classes are not
455 entirely precise, cosine similarity helps prevent overemphasis
456 on misclassification and aids in distinguishing between seen and
457 latent classes. We then concatenate the logits for both seen and
458 unseen classes as $\mathbf{X}_{logits} = \text{cat}(\mathbf{X}_s, \mathbf{X}_u) \in \mathbb{R}^{(N_s+U) \times H \times W}$,
459 where 'cat' denotes concatenation along the class dimension.
460 Finally, $\tilde{\mathbf{Y}}$ is used for pixel-level supervision (the fourth term
461 in Eq. 1) of the dense features by:

$$\mathcal{L}_s = \mathcal{L}_{focal}(\mathbf{X}_{logits}, \tilde{\mathbf{Y}}) + \mathcal{L}_{dice}(\mathbf{X}_{logits}, \tilde{\mathbf{Y}}) + \mathcal{L}_{ce}(\mathbf{X}_{logits}, \tilde{\mathbf{Y}}). \quad (7)$$

462 where \mathcal{L}_{focal} refers to the focal loss [58], \mathcal{L}_{dice} indicates the
463 DICE loss [5], and \mathcal{L}_{ce} denotes the cross-entropy loss. When
464 only seen classes are present in an image, latent generated
465 text embeddings will not be generated, and only seen text
466 embeddings are used for training.

467 In this method, semantics are implicitly leveraged through the
468 vision-language alignment previously established by the C2S
469 distillation. While the actual text embeddings for latent classes
470 are inaccessible, the model uses local visual features as a proxy
471 to generate pseudo-text embeddings via a transformer decoder.
472 These visual features, enhanced with local CLS tokens, serve to
473 bridge the semantic gap by approximating the structure of real
474 text embeddings. Thanks to the C2S-induced alignment, even
475 these visually derived embeddings retain semantic structure
476 aligned with CLIP's space, enabling the model to separate
477 seen and latent semantics. Although not equivalent to pure text
478 embeddings, this design allows the model to distinguish latent
479 categories without requiring explicit textual supervision.

E. Training Objective and Inference

480 **Training Objective:** To recap, the training objectives of CLIP-
481 to-Seg distillation are:

$$\mathcal{L} = \mathcal{L}_g + \mathcal{L}_l + \mathcal{L}_s, \quad (8)$$

TABLE I: Comparison with state-of-the-art methods under **inductive settings** where **bold** and underline indicate the best and the second-best performance.

Models	Backbone	PASCAL VOC			COCO-Stuff			PASCAL Context		
		hIoU	sIoU	uIoU	hIoU	sIoU	uIoU	hIoU	sIoU	uIoU
SPNet [59]	ResNet101 [60]	26.1	78.0	15.6	14.0	35.2	8.7	-	-	-
ZS3 [61]		28.7	77.3	17.7	15.0	34.7	9.5	15.8	20.8	12.7
CaGNet [36]		39.7	78.4	26.6	18.2	33.5	12.2	21.2	24.1	18.5
SIGN [62]		41.7	75.4	28.9	20.9	32.3	15.5	-	-	-
Joint [63]		45.9	77.7	32.5	-	-	-	20.5	33.0	14.9
ZegFormer [4]		73.3	86.4	63.6	34.8	36.6	33.2	-	-	-
Zzseg [13]	ViT-B [22]	77.5	83.5	72.5	37.8	39.3	36.3	-	-	-
ZegCLIP [5]		84.3	91.9	77.8	40.8	40.2	41.4	49.9	46.0	54.6
DeOP [10]		80.8	88.2	74.6	38.2	38.0	38.4	-	-	-
OTSeg+ [64]		87.1	93.3	81.6	41.5	41.3	41.8	57.7	55.2	60.4
CLIP-RC [11]		88.4	92.8	84.4	41.2	40.9	41.6	51.9	47.5	57.3
Ours	SegNeXt-B [17]	<u>89.3</u>	91.2	<u>87.4</u>	42.5	43.1	41.9	57.6	53.3	<u>62.8</u>
	Setr-B [23]	90.7	<u>92.3</u>	89.2	44.8	43.8	45.9	56.3	52.4	60.8
	Segformer-B4 [16]	88.7	<u>91.3</u>	86.2	<u>43.9</u>	<u>43.2</u>	<u>44.7</u>	58.0	<u>52.6</u>	64.5
	ViT-B [22]	90.7	92.1	89.4	<u>43.2</u>	<u>43.6</u>	<u>42.8</u>	57.1	<u>51.9</u>	63.5

TABLE II: Comparison with state-of-the-art methods under **transductive setting** where **bold** and underline indicate the best and the second-best performance, and ST indicates self-training [5, 64].

Models	Backbone	PASCAL VOC			COCO-Stuff			PASCAL Context		
		hIoU	sIoU	uIoU	hIoU	sIoU	uIoU	hIoU	sIoU	uIoU
Zzseg + ST [13]	ViT-B [22]	79.3	79.2	78.1	41.5	39.6	43.6	-	-	-
ZegCLIP + ST [5]		91.1	92.3	89.9	48.5	40.7	59.9	54.0	47.2	63.2
FreeSeg [43]		86.9	82.6	91.8	45.3	42.2	49.1	-	-	-
OTSeg+ ST [64]		94.4	94.3	94.3	49.8	41.4	62.6	59.8	54.0	67.0
CLIP-RC +ST [11]		93.0	<u>93.9</u>	<u>92.2</u>	49.7	42.0	60.8	55.1	48.1	64.5
Ours + ST	SegNext-B [17]	89.5	91.0	88.0	48.5	<u>43.7</u>	54.5	60.5	54.0	68.7
	Setr-B [23]	92.4	93.1	91.7	51.5	44.4	61.3	58.0	51.7	65.9
	Segformer-B4 [16]	89.0	91.6	86.6	50.8	43.3	61.4	60.0	<u>52.3</u>	70.3
	ViT-B [22]	91.0	92.1	89.9	50.1	43.4	59.2	58.1	<u>52.2</u>	65.6

TABLE III: Efficiency comparisons with other methods.

Method	Parameter ↓	GFLOPS ↓	FPS ↑
Zsseg [13]	61.1 M	1916.7	4.2
ZegFormer [4]	60.3 M	1829.3	6.8
ZegCLIP [5]	13.8 M	61.1	25.6
OTSeg+ [64]	13.8 M	61.9	22.5
Ours+SegNeXt [17]	32.0 M	33.5	40.9
Ours+SETR [23]	91.0 M	109.0	20.8
Ours+Segformer [16]	65.7 M	60.7	23.0

TABLE IV: Ablations on proposed modules by Segformer-B4.

Methods	hIoU	sIoU	uIoU
baseline (Segformer-B4)	11.2	41.3	6.4
baseline + latent embedding	20.2	41.4	13.4
baseline + distillation	38.8	41.2	36.6
baseline + distillation + latent embedding	42.3	41.9	42.7

Inference: Since the vision-language matching capability has already been transferred from CLIP to the backbone during training, we do not rely on CLIP at inference. Instead, we directly use the text embeddings from the text encoder as classifier weights, eliminating the need for latent class embeddings. Moreover, as the number of classes in a dataset is fixed, the text embeddings can be precomputed offline, introducing no additional computational overhead compared to standard segmentation models under the closed-set setting and methods that require additional adapters or visual prompts for

TABLE V: Ablations on global and local distillation.

Distillation			hIoU	sIoU	uIoU
	global	local			
-	-	-	20.2	41.4	13.4
-	✓	-	36.3	41.9	32.1
✓	-	-	40.8	41.6	40.1
✓	✓	-	42.3	41.9	42.7

TABLE VI: Ablations on different distillations.

Distillation	hIoU	sIoU	uIoU
Cosine Similarity [65]	37.6	41.4	34.4
L2 Loss [66]	17.8	18.4	17.3
Froster [26]	37.2	41.7	33.6
Our distillation	42.3	41.9	42.7

adapting CLIP to ZSS, e.g., ZegCLIP [5].

493

IV. EXPERIMENTS AND DISCUSSIONS

494

Dataset: To evaluate the effectiveness of our method, we select three representative benchmarks: PASCAL VOC [67], COCO-Stuff [68], and PASCAL Context [69] to conduct our experiments on zero-shot semantic segmentation (ZSS). The split of seen and unseen categories follows the setting of the previous works [5]. PASCAL VOC consists of 10,582 images for training and 1,449 images for validation. Note that we convert the ‘background’ category to the ‘ignored’. For this

495

496

497

498

499

500

501

502

TABLE VII: Ablations on global and local CLS tokens in latent embedding generation by Segformer-B4.

Calibration		hIoU	sIoU	uIoU
global	local			
-	-	38.8	41.2	36.6
-	✓	41.9	41.3	42.6
✓	-	41.7	41.4	42.1
✓	✓	42.3	41.9	42.7

dataset, there are 15 seen categories and 5 unseen categories. *COCO-Stuff* contains 171 categories totally. As in previous settings, 171 categories are split into 156 seen and 15 unseen categories. Besides, for the training dataset, there are 118,287 images and 5,000 images for testing. *PASCAL Context* includes 4,996 images for training and 5,104 images for testing. For the zero-shot semantic segmentation task, the dataset is split into 49 seen categories and 10 unseen categories.

Implementation Details: The proposed methods are implemented on the MMsegmentation. The CLIP model applied in our method is based on the ViT-B/16 model. All the experiments are conducted on 8 V100 GPUs, and the batch size is set to 16 for all three datasets. For all three datasets, the size of the input images is set as 512×512 . The iterations are set to 20K, 40K, and 80K for PASCAL VOC, PASCAL Context, and COCO-Stuff, respectively. The optimizer is set to AdamW with the default training schedule. In addition, the size of CLS token banks is set as 24. All other settings follow the original segmentation models. To evaluate the performance of both seen and unseen categories, we apply the harmonic mean IoU (hIoU) following previous works [5]. The relationship between mIoU and hIoU is $hIoU = \frac{2 \cdot sIoU \cdot uIoU}{sIoU + uIoU}$ where $sIoU$ and $uIoU$ indicate the mIoU of the seen and unseen categories, respectively. Besides the hIoU, $sIoU$ and $uIoU$ are also applied. Frames Per Second (FPS) is tested on RTX 3090.

528 A. Comparison with State-of-the-arts

529 We evaluate our method by distilling CLIP into three
530 representative closed-set segmentation models: SegNext, SETR,
531 and Segformer. As shown in Table I, our method consistently
532 outperforms existing state-of-the-art approaches across three
533 challenging benchmarks: PASCAL VOC, COCO-Stuff, and
534 PASCAL Context. For example, our method achieves significant
535 improvements in hIoU over CLIP-RC and OTSeg+, with
536 margins of 2.3%, 3.3%, and 0.3% on the respective datasets.
537 These gains mainly stem from improved generalization to
538 unseen categories. On COCO-Stuff, our method obtains a
539 4.3% higher uIoU than the best-performing baseline. Similar
540 trends can be observed across all datasets, indicating that our
541 model avoids overfitting to seen categories and better captures
542 transferable semantics. To further validate the robustness of
543 our approach, we also conduct experiments using ViT-B as the
544 backbone. As reported in the last row of Table I, our method
545 still achieves highly competitive performance, confirming its
546 effectiveness regardless of architecture.

547 Table II further compares our method under the inductive
548 setting with self-training (ST). Our method attains competitive
549 or superior results across all three benchmarks. Notably, we

TABLE VIII: Ablation on latent embedding and prototype calibrator by Segformer-B4.

Feature	Calibrator	hIoU	sIoU	uIoU
Prototypes	-	41.0	41.5	40.5
Prototypes	MLP	41.5	41.3	41.8
CLS tokens	-	40.2	41.5	38.9
CLS tokens	MLP	40.9	41.5	40.3
Prototypes + CLS tokens	Transformer	42.3	41.9	42.7

503 achieve the best hIoU and uIoU on the PASCAL Context
504 dataset, indicating strong generalization under limited supervision.
505 These results collectively demonstrate the advantage of
506 distilling vision-language knowledge into segmentation models
507 and confirm the broad applicability of our framework under
508 both standard and self-training settings.

509 We also provide a comparison of the computational cost and
510 efficiency of our method with previous methods as shown in
511 Table. III. We use a 512×512 image as input, compared with
512 the two-stage methods (first and second row in the table), our
513 method can achieve a much higher inference speed and much
514 lower GFLOPS. Compared with the methods that only add a
515 few trainable parameters, though our trainable parameters are
516 higher than theirs, our method has high flexibility based on the
517 segmentation model. For example, when we choose SegNeXt,
518 an efficient segmentation model, our GFLOPS are nearly 50%
519 of the SOTA one-stage methods, and achieve higher speed.

520 B. Ablation Studies

521 To evaluate the effectiveness of our method, we do ablation
522 studies on the COCO-Stuff dataset using 40K training iterations
523 with the same hyperparameters. Segformer-B4 is chosen
524 because of its balance in efficiency and performance. Despite
525 the shorter training schedule, the results also demonstrate the
526 effectiveness of our method.

527 **Ablation studies on the proposed methods:** Table IV
528 summarizes the ablation study of our proposed modules using
529 SegFormer-B4. Incorporating the latent embedding module
530 alone yields moderate gains (hIoU from 11.2% to 20.2%,
531 uIoU from 6.4% to 13.4%) by encouraging semantic expansion
532 beyond limited seen categories. However, without explicit
533 vision-language alignment, it struggles to substantially improve
534 generalization to unseen classes. In contrast, our CLIP-to-Seg
535 (C2S) distillation, although implemented with a single loss,
536 is deliberately designed to transfer CLIP’s vision-language
537 matching capability from a global token to dense features,
538 enabling pixel-level understanding rather than serving as a
539 simple auxiliary loss. This results in a dramatic boost in
540 zero-shot segmentation performance. When both modules
541 are combined, the model achieves the best overall results.
542 Remarkably, all results are obtained within 40K iterations, half
543 the standard budget, yet surpass prior state-of-the-art methods.

544 **Ablation studies on global and local distillation:** We
545 evaluate the individual and combined effects of global and
546 local distillation in Table V. Applying either global or local
547 distillation alone improves performance over the baseline, particu-
548 larly on unseen classes (uIoU), highlighting their individual
549 effectiveness. Notably, combining both strategies leads to the
550 best performance.

TABLE IX: Ablation studies on the size of token banks.

Token bank size	hIoU	sIoU	uIoU
0	41.0	41.5	40.4
2	41.5	41.7	41.4
6	42.3	41.9	42.7
14	40.9	41.3	40.5

TABLE XI: Ablation studies on the feature aggregation in global distillation.

Aggregation	hIoU	sIoU	uIoU
mean	38.4	41.1	35.9
max	42.0	41.1	42.9
attention	42.3	41.9	42.7

best overall performance across all metrics, demonstrating their complementary benefits in enhancing vision-language alignment. In contrast, approaches lacking such alignment struggle to generalize effectively to unseen categories.

Ablation studies on different distillations: We use contrastive learning to distill the knowledge from CLIP in C2S distillation, here, we try to use different distillation methods to prove the effectiveness of our method as shown in Table VI. First, we change the contrastive distillation to the cosine similarity and find that though the sIoU achieves similar performance, the uIoU drops to 34.4%. Then we change the cosine similarity to the direct L2 loss between the CLS tokens and the global features and find that both sIoU and uIoU drop drastically. Finally, we apply the residual feature distillation proposed in [26] and find that though a similar sIoU can be achieved, its uIoU is 9.1% lower than our method.

Ablation studies on the latent embedding generation: In this experiment, we want to clarify the effectiveness of the CLS tokens in the latent embedding generation as shown in Table VII. First, we set the methods without latent embedding as the baseline. Then we use only local CLS tokens to calibrate the latent text embeddings and find that the hIoU improves due to the 6.0% improvements in uIoU. Then, we only use the global CLS tokens, we find that compared with local CLS tokens, the hIoU drops 0.2% due to the uIoU decrease.

Besides, we also conduct experiments on how to generate the latent text embeddings as shown in Table VIII. First, we use the local features F_u for latent classes directly as the latent text embeddings without any generator. Compared with our method, we find that the performance drops due to the uIoU. Then, we use an MLP as the generator to replace the transformer decoder generator to evaluate if the interaction between the dense features and the CLS tokens is important. We find that compared with using only F_u the uIoU increases but is still lower than our method due to the lower IoU for unseen classes. Next, we directly apply the local CLS token as the latent text embeddings and find that the hIoU drops drastically to 40.2% from 42.3%, and adding an MLP can slightly increase the performance. Compared with the transformer decoder which combines the merits from the local features F_u and the CLS token, all other methods achieve sub-optimal performance.

Ablation studies on the token bank size: Table IX presents the ablation study on the impact of token bank size on segmentation

TABLE X: Ablation studies on the size of windows in pseudo mask generation.

Window Size	hIoU	sIoU	uIoU
3	41.2	41.3	41.1
7	41.8	41.3	42.3
3,7	42.3	41.9	42.7

TABLE XII: Ablation studies on other pseudo mask generation.

Methods	GFLOPs	hIoU	sIoU	uIoU
Mask Proposal [13]	17.6	41.3	41.4	41.2
Panoptic cut [48]	16.5	41.6	41.5	41.7
Ours	17.7	42.3	41.9	42.7

TABLE XIII: Experiments on the mask generation.

Classes	unseen	seen	all
mIoU	58.5	53.1	49.5

performance, measured by harmonic IoU (hIoU), seen IoU (sIoU), and unseen IoU (uIoU). The experiments demonstrate that the inclusion of a token bank significantly improves performance compared to not using a token bank (size 0). The optimal token bank size is found to be 6, achieving the highest hIoU (42.3%), sIoU (41.9%), and uIoU (42.7%). However, increasing the token bank size beyond this optimal point (e.g., size 14) leads to a sub-optimal performance.

Ablation studies on the size of K-Means: Table X summarizes the ablation study on the effect of window size K in mask generation. When using a single window size, a larger window (size 7) outperforms a smaller one (size 3), achieving 41.8% hIoU, 41.3% sIoU, and 42.3% uIoU. Notably, combining multiple window sizes (3 and 7) yields the best performance across all metrics, with 42.3% hIoU, 41.9% sIoU, and 42.7% uIoU. This result highlights the effectiveness of multi-scale aggregation in capturing complementary spatial information, which enhances the model’s segmentation capability.

Ablation studies on feature aggregation in global distillation: Table XI shows an ablation study on feature aggregation strategies, including mean pooling, max pooling, and attention-based aggregation. Mean pooling performs the worst due to over-smoothing, while max pooling improves performance by emphasizing the strongest responses. Attention-based aggregation achieves the best results (42.3% hIoU, 41.9% sIoU, 42.7% uIoU) by dynamically aggregating features, effectively balancing seen and unseen class contributions.

Comparison between other pseudo mask generation and our method: Table XII demonstrates the effectiveness of our pseudo mask generation strategy. Unlike prior methods relying on latent class names [53–55], which violate the zero-shot setting, our approach requires no class-specific information. Compared to Mask Proposal and Panoptic Cut, our method achieves the highest hIoU with comparable GFLOPs, achieving a strong balance between accuracy and efficiency.

C. Accuracy of the generated masks for latent classes

Readers may wonder if the generated masks are accurate enough to serve as the pseudo masks for latent classes. Therefore, we conduct an experiment on the VOC dataset [67], which contains 20 classes. We first split the dataset into seen classes (15 classes) and unseen classes (5 classes). Since the generated masks lack class labels, we convert the ground truth masks into binary masks. During evaluation, the generated mask with the highest IoU is selected as the prediction. The IoU metric is then used to assess the alignment between the selected generated mask and the corresponding ground truth mask. As shown in Table XIII, we evaluate the performance of our method, which notably requires no training and relies solely on clustering. When testing on unseen classes, our approach achieves an impressive 58.5% mIoU. Even for seen classes, the mIoU remains at 53.1%. Finally, when evaluated across all classes, the mIoU reaches 49.5%, demonstrating

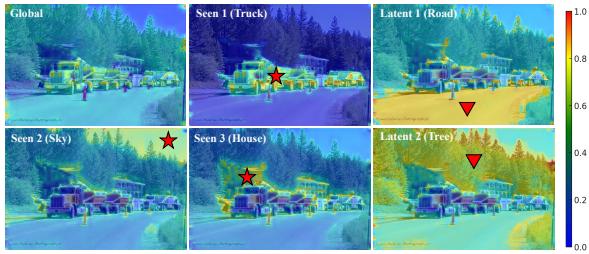


Fig. 5: Similarities between the CLS tokens and dense features, with the red star indicating seen classes and the red triangle indicating latent classes.

Fig. 6: The visualization of pseudo masks for latent classes. For different images, different classes can be found. The ‘seed1’ indicates the clustering results for the first seed.

692 the effectiveness of our clustering-based method in generating
693 high-quality masks without any training or fine-tuning.

694 *D. Qualitative Analysis*

695 **The visualization of the similarity between CLS tokens and**
696 **dense features:** We aim to determine whether the distillation
697 process can identify the representative regions. Therefore, we
698 visualize the similarities between the CLS tokens and the dense
699 features as shown in Fig. 5. First, we visualize the similarities
700 between the global CLS tokens and the dense features. We can
701 find that all the areas correspond to the global tokens. Then,
702 we obtain local CLS tokens for the seen areas, *e.g.*, truck (top
703 middle) and house (bottom middle), and we can find that the
704 correspondences are also class-specific. Finally, we generate
705 pseudo masks for the unannotated areas, *i.e.*, road (top right),
706 and tree (bottom right), and calculate their correspondence. We
707 can also achieve the expected results.

708 **The roles of latent class mining:** As shown in Fig. 6, this figure
709 highlights the capability of our approach to discover latent
710 classes. Specifically, the results depicted are obtained from
711 two images. Our approach can identify the meaningful objects
712 that are not annotated in the original dataset, demonstrating
713 its latent for discovering unseen or unannotated entities. For
714 instance, in the top of Fig. 6, the latent classes ‘tree’ and the
715 ‘signs’ can be found by different seeds. Besides, in the bottom
716 of Fig. 6, the latent classes ‘tree’ and ‘cow’ can also be found,
717 indicating our effectiveness.

718 **Qualitative Analysis of Each Module.** Fig. 7 shows visual
719 comparisons demonstrate the contribution of each module.
720 Without global distillation, predictions become fragmented and
721 confuse unseen classes (*e.g.*, cow vs. giraffe). Removing local
722 distillation causes semantic inconsistency within objects, while
723 omitting prototype calibration leads to imprecise boundaries.
724 In contrast, our full model produces accurate and consistent
725 segmentation, highlighting the effectiveness of all components.

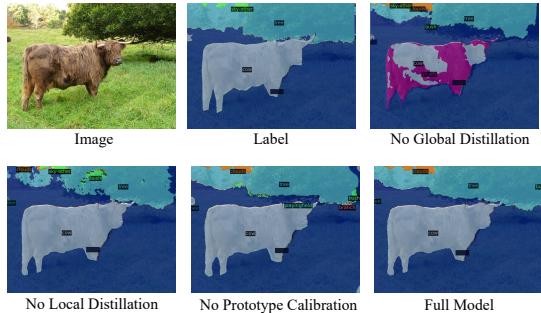


Fig. 7: The qualitative results of each module.

Failure cases: Fig. 9 shows representative failure cases of our
726 method. In the first row, the model misclassifies a concrete
727 as a common wall and confuses bed with carpet, indicating
728 difficulties in fine-grained object recognition under indoor
729 conditions. In the second row, the model fails to correctly
730 segment the tree and leaves. These results suggest that our
731 method still struggles with small object discrimination.

The visualization of prediction: We visualize the prediction of
732 our method as shown in Fig. 8. Compared with SOTA methods,
733 *i.e.*, ZegCLIP [5], our method can obtain exceptional results
734 on both seen and unseen categories. For example, the ‘trees’ in
735 the fourth image are classified as another unseen class (road)
736 in ZegCLIP. However, our method can correctly recognize it.

739 *E. Discussions*

Discussion on CLIP-to-Seg Distillation: For global distillation,
740 our method relies solely on the CLS token representing the
741 entire image, rather than extracting CLS tokens for individual
742 regions [53]. Furthermore, our global distillation adopts a
743 whole-vision distillation approach and performs feature-level
744 aggregation instead of patch-level aggregation, which may
745 suffer from the size of patches and hurt the pixel-level
746 segmentation, compared to [70]. For local distillation, unlike
747 methods that focus exclusively on pulling positive pairs closer
748 [53], our approach also pushes negative pairs from different
749 classes further apart, ensuring more robust class separation.

750 The primary reason for selecting CLIP as teacher model is the
751 capability to perform vision-language matching, which helps
752 segmentation models generalize to classes that do not appear in
753 training. Besides, while other vision-foundation models, such as
754 SAM [71], excel at delineating object boundaries, they cannot
755 determine whether these segments belong to the same class
756 or tell what class it is. These limitations make other vision-
757 foundation models less suitable for semantic segmentation.

758 **Discussion on Latent Embedding Generation:** Readers may
759 be concerned about whether this method violates the zero-shot
760 setting. We argue that our method does not violate the zero-
761 shot setting for the following reasons. First, existing methods
762 such as [5, 11] also incorporate the loss from unannotated
763 areas by pushing the features in these areas away from seen
764 text embeddings. This ensures that features in unannotated
765 regions are less biased towards seen classes and enforces
766 that these features belong to unseen classes during inference.
767 Our approach achieves a similar goal but in a different
768 manner: instead of explicitly enforcing feature separation, we
769 leverage clustering to impose a self-organizing structure on

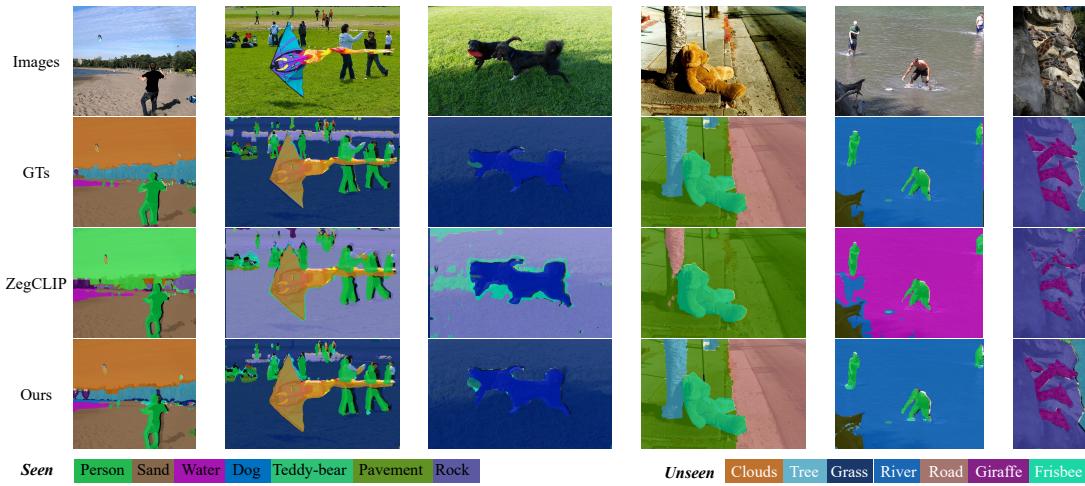


Fig. 8: Visualization comparison between ZegCLIP and our methods.

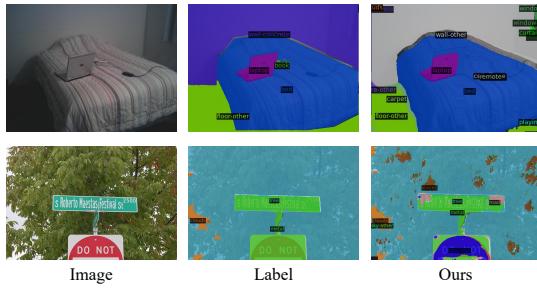


Fig. 9: The qualitative results of failure cases.

771 unannotated regions. Importantly, this clustering process is
772 entirely unsupervised and does not utilize any labels from
773 unseen classes. The clustering of features is solely driven by
774 their feature similarity, without any guidance from class-level
775 text embeddings. Consequently, the clustering only influences
776 the spatial coherence of features within unannotated regions
777 rather than introducing information that could compromise
778 the zero-shot assumption. Second, we do not use unseen text
779 embeddings during training, and the latent text embeddings
780 merely come from visual features and serve as clustering
781 centers. These clustering centers change dynamically with
782 each image rather than remaining fixed like a classifier. They
783 are only used to group similar features together and do not
784 impose any fixed class labels, ensuring that the model does
785 not learn specific unseen categories during training.

V. CONCLUSION

787 In this paper, we propose the CLIP-to-Seg Distillation
788 framework to overcome the limitations of directly adapting
789 CLIP for segmentation tasks. Our approach integrates both
790 global and local distillation strategies to transfer CLIP’s zero-
791 shot generalization capabilities to closed-set segmentation
792 models. By aligning dense features from segmentation models
793 with CLS tokens from CLIP at both global and local levels,
794 we facilitate effective distillation from CLIP to pixel-level
795 segmentation models. Additionally, introducing synthesized
796 text embeddings for latent classes enhances the model’s ability
797 to generalize to new concepts. Without adding extra parameters
798 or computational overhead, our method achieves state-of-the-art
799 performance on zero-shot segmentation benchmarks, offering

a flexible and efficient solution to extend the generalization
800 capabilities of existing segmentation models.

Limitation and Future Works: Though effective, our method
801 still has some drawbacks. The pseudo masks and the text
802 embeddings for latent classes are not accurate enough, leading
803 to sub-optimal performance compared to the fully supervised
804 method. In the future, we aim to produce more accurate pseudo
805 masks and pseudo text embeddings.

ACKNOWLEDGMENT

806 Support for this work was given by the Toyota Motor
807 Corporation (TMC) and JSPS KAKENHI Grant Number
808 23K28164 and JST CREST Grant Number JPMJCR22D1.
809 However, note that this article solely reflects the opinions and
810 conclusions of its authors and not TMC or any other Toyota
811 entity. Computations are done on “Flow” at the Information
812 Technology Center, Nagoya University.

REFERENCES

- [1] J. Chen, D. Deguchi, C. Zhang, X. Zheng, and H. Murase, “Frozen is better than learning: A new design of prototype-based classifier for semantic segmentation,” *Pattern Recognition*, vol. 152, p. 110431, 2024.
- [2] X. Zheng, Y. Luo, P. Zhou, and L. Wang, “Distilling efficient vision transformers from cnns for semantic segmentation,” *Pattern Recognition*, vol. 158, p. 111029, 2025.
- [3] Y. Liu, P. Wu, M. Wang, and J. Liu, “Cpal: Cross-prompting adapter with loras for rgb+ x semantic segmentation,” *IEEE Transactions on Circuits and Systems for Video Technology*, 2025.
- [4] J. Ding, N. Xue, G.-S. Xia, and D. Dai, “Decoupling zero-shot semantic segmentation,” in *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2022, pp. 11 583–11 592.
- [5] Z. Zhou, Y. Lei, B. Zhang, L. Liu, and Y. Liu, “Zegclip: Towards adapting clip for zero-shot semantic segmentation,” in *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2023, pp. 11 175–11 185.

838 [6] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh,
 839 S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark
 840 *et al.*, “Learning transferable visual models from natural
 841 language supervision,” in *International Conference on
 842 Machine Learning*. PMLR, 2021, pp. 8748–8763.

843 [7] Y. Zhao, J. Sun, L. Zhang, and H. Lu, “Focusclip:
 844 Focusing on anomaly regions by visual-text discrepancies,”
 845 *IEEE Transactions on Circuits and Systems for Video
 846 Technology*, pp. 1–1, 2024.

847 [8] S. Wu, W. Zhang, L. Xu, S. Jin, X. Li, W. Liu, and
 848 C. C. Loy, “CLIPSelf: Vision transformer distills itself
 849 for open-vocabulary dense prediction,” in *The Twelfth
 850 International Conference on Learning Representations*,
 851 2024.

852 [9] M. Xu, Z. Zhang, F. Wei, H. Hu, and X. Bai, “Side adapter
 853 network for open-vocabulary semantic segmentation,” in
 854 *Proceedings of the IEEE/CVF Conference on Computer
 855 Vision and Pattern Recognition*, 2023, pp. 2945–2954.

856 [10] C. Han, Y. Zhong, D. Li, K. Han, and L. Ma, “Open-
 857 vocabulary semantic segmentation with decoupled one-
 858 pass network,” in *Proceedings of the IEEE/CVF Interna-
 859 tional Conference on Computer Vision*, 2023, pp. 1086–
 860 1096.

861 [11] Y. Zhang, M.-H. Guo, M. Wang, and S.-M. Hu, “Ex-
 862 ploring regional clues in clip for zero-shot semantic seg-
 863 mentation,” in *Proceedings of the IEEE/CVF Conference
 864 on Computer Vision and Pattern Recognition*, 2024, pp.
 865 3270–3280.

866 [12] Z. Zhang, W. Ke, Y. Zhu, X. Liang, J. Liu, Q. Ye,
 867 and T. Zhang, “Language-driven visual consensus for
 868 zero-shot semantic segmentation,” *IEEE Transactions on
 869 Circuits and Systems for Video Technology*, 2024.

870 [13] M. Xu, Z. Zhang, F. Wei, Y. Lin, Y. Cao, H. Hu, and
 871 X. Bai, “A simple baseline for open-vocabulary semantic
 872 segmentation with pre-trained vision-language model,” in
 873 *European Conference on Computer Vision*. Springer,
 874 2022, pp. 736–753.

875 [14] K. Han, Y. Liu, J. H. Liew, H. Ding, J. Liu, Y. Wang,
 876 Y. Tang, Y. Yang, J. Feng, Y. Zhao *et al.*, “Global knowl-
 877 edge calibration for fast open-vocabulary segmentation,”
 878 in *Proceedings of the IEEE/CVF International Conference
 879 on Computer Vision*, 2023, pp. 797–807.

880 [15] Y. Kim, J. Park, Y. Jang, M. Ali, T.-H. Oh, and S.-H. Bae,
 881 “Distilling global and local logits with densely connected
 882 relations,” in *Proceedings of the IEEE/CVF International
 883 Conference on Computer Vision*, 2021, pp. 6290–6300.

884 [16] E. Xie, W. Wang, Z. Yu, A. Anandkumar, J. M. Alvarez,
 885 and P. Luo, “Segformer: Simple and efficient design for
 886 semantic segmentation with transformers,” *Advances in
 887 Neural Information Processing Systems*, vol. 34, 2021.

888 [17] M.-H. Guo, C.-Z. Lu, Q. Hou, Z. Liu, M.-M. Cheng, and
 889 S.-M. Hu, “Segnext: Rethinking convolutional attention
 890 design for semantic segmentation,” *Advances in Neural
 891 Information Processing Systems*, vol. 35, pp. 1140–1156,
 892 2022.

893 [18] J. Long, E. Shelhamer, and T. Darrell, “Fully convolu-
 894 tional networks for semantic segmentation,” in *Proceed-
 895 ings of the IEEE Conference on Computer Vision and
 896 Pattern Recognition*, 2015, pp. 3431–3440.

897 [19] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and
 898 A. L. Yuille, “Deeplab: Semantic image segmentation
 899 with deep convolutional nets, atrous convolution, and fully
 900 connected crfs,” *IEEE Transactions on Pattern Analysis
 901 and Machine Intelligence*, vol. 40, no. 4, pp. 834–848,
 902 2017.

903 [20] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and
 904 H. Adam, “Encoder-decoder with atrous separable con-
 905 volution for semantic image segmentation,” in *Proceedings
 906 of the European Conference on Computer Vision*, 2018,
 907 pp. 801–818.

908 [21] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu,
 909 and Y. Wei, “Deformable convolutional networks,” in
 910 *Proceedings of the IEEE International Conference on
 911 Computer Vision*, 2017, pp. 764–773.

912 [22] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn,
 913 X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer,
 914 G. Heigold, S. Gelly *et al.*, “An image is worth 16x16
 915 words: Transformers for image recognition at scale,” *arXiv
 916 preprint arXiv:2010.11929*, 2020.

917 [23] S. Zheng, J. Lu, H. Zhao, X. Zhu, Z. Luo, Y. Wang, Y. Fu,
 918 J. Feng, T. Xiang, P. H. Torr *et al.*, “Rethinking semantic
 919 segmentation from a sequence-to-sequence perspective
 920 with transformers,” in *Proceedings of the IEEE/CVF
 921 Conference on Computer Vision and Pattern Recognition*,
 922 2021, pp. 6881–6890.

923 [24] B. Cheng, I. Misra, A. G. Schwing, A. Kirillov, and
 924 R. Girdhar, “Masked-attention mask transformer for
 925 universal image segmentation,” in *Proceedings of the
 926 IEEE/CVF Conference on Computer Vision and Pattern
 927 Recognition*, 2022, pp. 1290–1299.

928 [25] B. Cheng, A. Schwing, and A. Kirillov, “Per-pixel classi-
 929 fication is not all you need for semantic segmentation,”
 930 *Advances in Neural Information Processing Systems*,
 931 vol. 34, pp. 17 864–17 875, 2021.

932 [26] X. Huang, H. Zhou, K. Yao, and K. Han, “FROSTER:
 933 Frozen CLIP is a strong teacher for open-vocabulary ac-
 934 tion recognition,” in *The Twelfth International Conference
 935 on Learning Representations*, 2024.

936 [27] G. Hinton, “Distilling the knowledge in a neural network,”
 937 *arXiv preprint arXiv:1503.02531*, 2015.

938 [28] Z. Yang, A. Zeng, Z. Li, T. Zhang, C. Yuan, and Y. Li,
 939 “From knowledge distillation to self-knowledge distillation:
 940 A unified approach with normalized loss and customized
 941 soft labels,” in *Proceedings of the IEEE/CVF Interna-
 942 tional Conference on Computer Vision*, 2023, pp. 17 185–17 194.

943 [29] X. Lu, L. Jiao, L. Li, F. Liu, X. Liu, and S. Yang, “Self
 944 pseudo entropy knowledge distillation for semi-supervised
 945 semantic segmentation,” *IEEE Transactions on Circuits
 946 and Systems for Video Technology*, vol. 34, no. 8, pp.
 947 7359–7372, 2024.

948 [30] Z. Quan, Q. Chen, M. Zhang, W. Hu, Q. Zhao, J. Hou,
 949 Y. Li, and Z. Liu, “Mawkdn: A multimodal fusion wavelet
 950 knowledge distillation approach based on cross-view
 951 attention for action recognition,” *IEEE Transactions on
 952 Circuits and Systems for Video Technology*, vol. 33, no. 10,
 953 pp. 5734–5749, 2023.

954 [31] T. Sun, H. Chen, G. Hu, and C. Zhao, “Explainability-
955 based knowledge distillation,” *Pattern Recognition*, vol.
956 159, p. 111095, 2025. 1012

957 [32] S. He, H. Ding, and W. Jiang, “Primitive generation and
958 semantic-related alignment for universal zero-shot seg-
959 mentation,” in *Proceedings of the IEEE/CVF Conference
960 on Computer Vision and Pattern Recognition*, 2023, pp.
961 11 238–11 247. 1013

962 [33] C. Jia, Y. Yang, Y. Xia, Y.-T. Chen, Z. Parekh, H. Pham,
963 Q. Le, Y.-H. Sung, Z. Li, and T. Duerig, “Scaling up
964 visual and vision-language representation learning with
965 noisy text supervision,” in *International Conference on
966 Machine Learning*. PMLR, 2021, pp. 4904–4916. 1014

967 [34] Y. Zhang, X. Huang, J. Ma, Z. Li, Z. Luo, Y. Xie, Y. Qin,
968 T. Luo, Y. Li, S. Liu *et al.*, “Recognize anything: A strong
969 image tagging model,” *arXiv preprint arXiv:2306.03514*,
970 2023. 1015

971 [35] R. Pei, J. Liu, W. Li, B. Shao, S. Xu, P. Dai, J. Lu, and
972 Y. Yan, “Clipping: Distilling clip-based models with a
973 student base for video-language retrieval,” in *Proceedings
974 of the IEEE/CVF Conference on Computer Vision and
975 Pattern Recognition*, 2023, pp. 18 983–18 992. 1016

976 [36] Z. Gu, S. Zhou, L. Niu, Z. Zhao, and L. Zhang, “Context-
977 aware feature generation for zero-shot semantic segmen-
978 tation,” in *Proceedings of the 28th ACM International
979 Conference on Multimedia*, 2020, pp. 1921–1929. 1017

980 [37] M. Jia, L. Tang, B.-C. Chen, C. Cardie, S. Belongie,
981 B. Hariharan, and S.-N. Lim, “Visual prompt tuning,” in
982 *European Conference on Computer Vision*. Springer,
983 2022, pp. 709–727. 1018

984 [38] N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone,
985 Q. De Laroussilhe, A. Gesmundo, M. Attariyan, and
986 S. Gelly, “Parameter-efficient transfer learning for nlp,” in
987 *International Conference on Machine Learning*. PMLR,
988 2019, pp. 2790–2799. 1019

989 [39] B. Li, K. Q. Weinberger, S. Belongie, V. Koltun, and
990 R. Ranftl, “Language-driven semantic segmentation,” in
991 *International Conference on Learning Representations*,
992 2022. 1020

993 [40] G. Ghiasi, X. Gu, Y. Cui, and T.-Y. Lin, “Scaling open-
994 vocabulary image segmentation with image-level labels,”
995 in *European Conference on Computer Vision*. Springer,
996 2022, pp. 540–557. 1021

997 [41] C. Zhou, C. C. Loy, and B. Dai, “Extract free dense labels
998 from clip,” in *European Conference on Computer Vision*.
999 Springer, 2022, pp. 696–712. 1022

1000 [42] Z. Ding, J. Wang, and Z. Tu, “Open-vocabulary
1001 panoptic segmentation with maskclip,” *arXiv preprint
1002 arXiv:2208.08984*, 2022. 1023

1003 [43] J. Qin, J. Wu, P. Yan, M. Li, R. Yuxi, X. Xiao, Y. Wang,
1004 R. Wang, S. Wen, X. Pan *et al.*, “Freeseg: Unified,
1005 universal and open-vocabulary image segmentation,” in
1006 *Proceedings of the IEEE/CVF Conference on Computer
1007 Vision and Pattern Recognition*, 2023, pp. 19 446–19 455. 1024

1008 [44] Q. Yu, J. He, X. Deng, X. Shen, and L.-C. Chen,
1009 “Convolutions die hard: Open-vocabulary segmentation
1010 with single frozen convolutional CLIP,” in *Thirty-seventh
1011 Conference on Neural Information Processing Systems*,
1012 2023. 1025

1013 [45] S. Jiao, Y. Wei, Y. Wang, Y. Zhao, and H. Shi, “Learning
1014 mask-aware clip representations for zero-shot segmen-
1015 tation,” *Advances in Neural Information Processing Systems*,
1016 vol. 36, pp. 35 631–35 653, 2023. 1017

1017 [46] J. Xu, S. Liu, A. Vahdat, W. Byeon, X. Wang, and
1018 S. De Mello, “Open-vocabulary panoptic segmentation
1019 with text-to-image diffusion models,” in *Proceedings
1020 of the IEEE/CVF Conference on Computer Vision and
1021 Pattern Recognition*, 2023, pp. 2955–2966. 1022

1022 [47] X. Li, H. Yuan, W. Li, H. Ding, S. Wu, W. Zhang,
1023 Y. Li, K. Chen, and C. C. Loy, “Omg-seg: Is one model
1024 good enough for all segmentation?” in *Proceedings of the
1025 IEEE/CVF conference on computer vision and pattern
1026 recognition*, 2024, pp. 27 948–27 959. 1027

1027 [48] D. Kang and M. Cho, “In defense of lazy visual grounding
1028 for open-vocabulary semantic segmentation,” in *European
1029 Conference on Computer Vision*. Springer, 2024, pp.
1030 143–164. 1031

1031 [49] J. Wu, X. Li, S. Xu, H. Yuan, H. Ding, Y. Yang, X. Li,
1032 J. Zhang, Y. Tong, X. Jiang *et al.*, “Towards open
1033 vocabulary learning: A survey,” *IEEE Transactions on
1034 Pattern Analysis and Machine Intelligence*, vol. 46, no. 7,
1035 pp. 5092–5113, 2024. 1036

1036 [50] F. Li, H. Zhang, P. Sun, X. Zou, S. Liu, C. Li, J. Yang,
1037 L. Zhang, and J. Gao, “Segment and recognize anything
1038 at any granularity,” in *European Conference on Computer
1039 Vision*. Springer, 2024, pp. 467–484. 1040

1040 [51] H. Yuan, X. Li, C. Zhou, Y. Li, K. Chen, and C. C. Loy,
1041 “Open-vocabulary sam: Segment and recognize twenty-
1042 thousand classes interactively,” in *European Conference
1043 on Computer Vision*. Springer, 2024, pp. 419–437. 1044

1044 [52] X. Gu, T.-Y. Lin, W. Kuo, and Y. Cui, “Open-vocabulary
1045 object detection via vision and language knowledge
1046 distillation,” in *International Conference on Learning
1047 Representations*, 2022. 1048

1048 [53] M. Gao, C. Xing, J. C. Niebles, J. Li, R. Xu, W. Liu,
1049 and C. Xiong, “Open vocabulary object detection with
1050 pseudo bounding-box labels,” in *European Conference
1051 on Computer Vision*. Springer, 2022, pp. 266–282. 1052

1052 [54] S. Xu, X. Li, S. Wu, W. Zhang, Y. Tong, and C. C.
1053 Loy, “Dst-det: Simple dynamic self-training for open-
1054 vocabulary object detection,” *IEEE Transactions on
1055 Circuits and Systems for Video Technology*, 2024. 1056

1056 [55] T. Cheng, L. Song, Y. Ge, W. Liu, X. Wang, and Y. Shan,
1057 “Yolo-world: Real-time open-vocabulary object detection,”
1058 in *Proceedings of the IEEE/CVF Conference on Computer
1059 Vision and Pattern Recognition*, 2024, pp. 16 901–16 911. 1060

1060 [56] Z. Qin, Y. Chen, G. Zhu, E. Zhou, Y. Zhou, Y. Zhou,
1061 and C. Zhu, “Enhanced pseudo-label generation with
1062 self-supervised training for weakly-supervised semantic
1063 segmentation,” *IEEE Transactions on Circuits and Sys-
1064 tems for Video Technology*, vol. 34, no. 8, pp. 7017–7028,
1065 2024. 1066

1066 [57] Z. Wu, Y. Xiong, S. X. Yu, and D. Lin, “Unsupervised fea-
1067 ture learning via non-parametric instance discrimination,”
1068 in *Proceedings of the IEEE Conference on Computer
1069 Vision and Pattern Recognition*, 2018, pp. 3733–3742. 1069

1070 [58] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár,
1071 “Focal loss for dense object detection,” in *Proceedings of
1072 the IEEE International Conference on Computer Vision*,
1073 2017, pp. 2980–2988.

1074 [59] Y. Xian, S. Choudhury, Y. He, B. Schiele, and Z. Akata,
1075 “Semantic projection network for zero-and few-label
1076 semantic segmentation,” in *Proceedings of the IEEE/CVF
1077 Conference on Computer Vision and Pattern Recognition*,
1078 2019, pp. 8256–8265.

1079 [60] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learn-
1080 ing for image recognition,” in *Proceedings of the IEEE
1081 Conference on Computer Vision and Pattern Recognition*,
1082 2016, pp. 770–778.

1083 [61] M. Bucher, T.-H. Vu, M. Cord, and P. Pérez, “Zero-shot
1084 semantic segmentation,” *Advances in Neural Information
1085 Processing Systems*, vol. 32, 2019.

1086 [62] J. Cheng, S. Nandi, P. Natarajan, and W. Abd-Almageed,
1087 “Sign: Spatial-information incorporated generative network
1088 for generalized zero-shot semantic segmentation,” in *Proceedings of the IEEE/CVF International Conference
1089 on Computer Vision*, 2021, pp. 9556–9566.

1090 [63] D. Baek, Y. Oh, and B. Ham, “Exploiting a joint
1091 embedding space for generalized zero-shot semantic seg-
1092 mentation,” in *Proceedings of the IEEE/CVF International
1093 Conference on Computer Vision*, 2021, pp. 9536–9545.

1094 [64] K. Kim, Y. Oh, and J. C. Ye, “Otseg: Multi-prompt
1095 sinkhorn attention for zero-shot semantic segmentation,”
1096 in *Proceedings of the European Conference on Computer
1097 Vision*, 2024.

1098 [65] F. Tung and G. Mori, “Similarity-preserving knowledge
1099 distillation,” in *Proceedings of the IEEE/CVF Interna-
1100 tional Conference on Computer Vision*, 2019, pp. 1365–
1101 1374.

1102 [66] X. Wang, T. Fu, S. Liao, S. Wang, Z. Lei, and T. Mei,
1103 “Exclusivity-consistency regularized knowledge distilla-
1104 tion for face recognition,” in *Computer Vision–ECCV
1105 2020: 16th European Conference, Glasgow, UK, August
1106 23–28, 2020, Proceedings, Part XXIV 16*. Springer, 2020,
1107 pp. 325–342.

1108 [67] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I.
1109 Williams, J. Winn, and A. Zisserman, “The pascal visual
1110 object classes challenge: A retrospective,” *International
1111 Journal of Computer Vision*, vol. 111, no. 1, pp. 98–136,
1112 Jan. 2015.

1113 [68] H. Caesar, J. Uijlings, and V. Ferrari, “Coco-stuff: Thing
1114 and stuff classes in context,” in *Proceedings of the IEEE
1115 Conference on Computer Vision and Pattern Recognition*,
1116 2018, pp. 1209–1218.

1117 [69] R. Mottaghi, X. Chen, X. Liu, N.-G. Cho, S.-W. Lee,
1118 S. Fidler, R. Urtasun, and A. Yuille, “The role of
1119 context for object detection and semantic segmentation
1120 in the wild,” in *Proceedings of the IEEE Conference
1121 on Computer Vision and Pattern Recognition*, 2014, pp.
1122 891–898.

1123 [70] Z. Ma, G. Luo, J. Gao, L. Li, Y. Chen, S. Wang, C. Zhang,
1124 and W. Hu, “Open-vocabulary one-stage detection with
1125 hierarchical visual-language knowledge distillation,” in
1126 *Proceedings of the IEEE/CVF Conference on Computer
1127 Vision and Pattern Recognition*, 2022, pp. 14 074–14 083.

1128 [71] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland,
1129 L. Gustafson, T. Xiao, S. Whitehead, A. C. Berg, W.-
1130 Y. Lo *et al.*, “Segment anything,” in *Proceedings of the
1131 IEEE/CVF International Conference on Computer Vision*,
1132 2023, pp. 4015–4026.

1133

JIALEI CHEN (Student Member, IEEE) received
1134 the B.Eng. and M.Eng. degrees from Northeastern
1135 University, Shenyang, China in 2019 and 2022. He
1136 is currently pursuing a Ph.D. degree in information
1137 science from Nagoya University, Japan. His main
1138 research interests include semantic segmentation,
1139 zero-shot learning, and image processing.

1140

Zhenzhen Quan received the B.S. degree from Shan-
1141 dong University of Science and Technology, Qingdao,
1142 China, in 2014 and received the M.S. degree from
1143 Northeastern University, Shenyang, Liaoning, China,
1144 in 2017. She is currently working toward the Ph.D.
1145 degree with the School of Information Science and
1146 Engineering, Shandong University, Qingdao, China.
1147 Her research interests include action recognition,
1148 computer vision, and machine learning.

1149

CHENKAI ZHANG received the B.Eng. and B.A.
1150 degrees from Dalian University of Technology,
1151 Dalian, China in 2019, and B.Eng. and M.Eng. degree
1152 from Ritsumeikan University, Shiga, Japan in 2019
1153 and 2022. He is currently pursuing a Ph.D. degree
1154 in information science from Nagoya University,
1155 Japan. His main research interests include explainable
1156 artificial intelligence and the reliability of automatic
1157 driving.

1158

Xu Zheng (Student Member, IEEE) is a Ph.D.
1159 student in the Visual Learning and Intelligent Systems
1160 Lab, Artificial Intelligence Thrust, The Hong Kong
1161 University of Science and Technology, Guangzhou
1162 Campus (HKUST-GZ). He got his B.E. and M.S.
1163 from Northeastern University, China. His research
1164 interests include multi-modal learning, sensing and
1165 perception techniques.

1166

DAISUKE DEGUCHI (Member, IEEE) received
1167 the B.Eng. and M.Eng. degrees in engineering and
1168 the Ph.D. degree in information science from Nagoya
1169 University, Japan, in 2001, 2003, and 2006, respec-
1170 tively. He became a Postdoctoral Fellow at Nagoya
1171 University, in 2006. From 2008 to 2012, he was
1172 an Assistant Professor at the Graduate School of
1173 Information Science. From 2012 to 2019, he was an
1174 Associate Professor at the Information Strategy Office.
1175 Since 2020, he has been an Associate Professor with
1176 the Graduate School of Informatics. He is working on
1177 the recognition, recognition from videos, and their applications
1178 to ITS technologies, such as detection and recognition of traffic signs. He is a
1179 member of IEICE and IPS Japan.

1180

HIROSHI MURASE (Life Fellow, IEEE) received
1181 the B.Eng., M.Eng., and Ph.D. degrees in electri-
1182 cal engineering from Nagoya University, Japan. In
1183 1980, he joined Nippon Telegraph and Telephone
1184 Corporation (NTT). From 1992 to 1993, he was a
1185 Visiting Research Scientist with Columbia University,
1186 New York. Since 2003, he has been a Professor
1187 with Nagoya University. Since 2021, he has been
1188 an Emeritus Professor. His research interests include
1189 computer vision, pattern recognition, and multimedia
1190 information processing. He is a fellow of the IPSJ
1191 and the IEICE. He was awarded the IEEE CVPR Best Paper Award, in 1994,
1192 the IEEE ICRA Best Video Award, in 1996, the IEICE Achievement Award, in
1193 2002, the IEEE Multimedia Paper Award, in 2004, and the IEICE Distinguished
1194 Achievement and Contributions Award, in 2018. He received the Medal with
1195 Purple Ribbon from the Government of Japan, in 2012.

1196