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Abstract—CLIP has greatly advanced zero-shot segmentation by1

leveraging its strong visual-language association and generalization2

capability. However, directly adapting CLIP for segmentation3

often yields suboptimal results due to inconsistencies between4

image and pixel-level prediction objectives. Additionally, merely5

combining segmentation and CLIP models often leads to disjoint6

optimization, introducing significant computational overhead and7

additional parameters. To address these issues, we propose a8

novel CLIP-to-Seg Distillation approach, incorporating global9

and local distillation to flexibly transfer CLIP’s powerful zero-10

shot generalization capability to existing closed-set segmentation11

models. Global distillation leverages CLS tokens to condense12

segmentation features and distills high-level concepts to the13

segmentation model via image-level features. Local distillation14

adapts CLIP’s local semantic transferability to dense prediction15

tasks using object-level features, aided by pseudo-mask generation16

for latent class mining. To further generalize the CLIP-distilled17

segmentation model, we generate latent text embeddings for the18

mined latent classes by coordinating their text embeddings and19

dense features. Our method equips existing closed-set segmentation20

models with strong generalization capabilities for open concepts21

through effective and flexible CLIP-to-Seg distillation. Without22

relying on the CLIP model or introducing extra inference23

overhead, our method seamlessly integrates into existing closed-set24

segmentation models and enables zero-shot capability, achieving25

state-of-the-art performance on multiple benchmarks.26

Index Terms—CLIP-to-Seg Distillation, Latent Class Mining,27

Zero-shot Learning, Semantic Segmentation28

I. INTRODUCTION29

In recent years, semantic segmentation has advanced rapidly,30

benefiting from deep learning technologies. However, con-31

ventional semantic segmentation models are heavily data-32

dependent [1–3], requiring large volumes of annotated images33

to achieve satisfactory performance. Collecting these images34

and annotations is both time-consuming and expensive.35

To address this challenge, zero-shot semantic segmentation36

has been proposed and has gained significant attention [4, 5].37

In zero-shot semantic segmentation, models are trained on seen38

classes and must generalize to unseen classes during inference,39

relying solely on their text descriptions. To accomplish this, in-40

spired by the works that adopt CLIP [6] to do downstream tasks41

[7–9], existing methods [4, 5] typically utilize vision-language42

models with strong zero-shot generalization capabilities, such43

as CLIP [6], for pixel-level segmentation tasks.44

To effectively adapt CLIP for segmentation, existing methods45

can be categorized into two groups: one-stage methods and46
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two-stage methods, as shown in (a) and (b) of Fig. 1. In one- 47

stage methods [5, 10–12], to maintain CLIP’s generalization 48

capability, the adaptation module or trainable prompts are often 49

inserted after the frozen CLIP visual encoder to adapt the dense 50

features for segmentation. Two-stage methods [4, 13] typically 51

require a pre-trained, class-agnostic object proposer to identify 52

latent classes (the classes without labels during training) in 53

an image. These proposals are then fed into the frozen CLIP 54

visual encoder for classification generalization. 55

Despite their effectiveness, both approaches exhibit inherent 56

limitations. In one-stage methods, CLIP is primarily optimized 57

for capturing global context through the CLS token, but it lacks 58

the spatial information required to capture fine-grained local 59

details necessary for precise segmentation. However, dense 60

prediction tasks prioritize high-quality pixel-level parsing over 61

image-level understanding, creating a mismatch between task 62

requirements and CLIP’s capabilities, thus limiting the effec- 63

tiveness of one-stage methods. Two-stage methods primarily 64

suffer from the disjointed optimization between mask proposal 65

generation and CLIP’s class recognition. Additionally, two- 66

stage methods are computationally expensive, as they require 67

both proposal generation and per-proposal classification. 68

To address the limitations of both approaches, we aim 69

to propose a novel framework that achieves high-quality 70

segmentation without incurring additional computational costs 71

during inference and simultaneously maintains strong zero- 72

shot generalization capabilities. We start by revisiting closed- 73

set segmentation models, which are highly optimized for 74

capturing local details crucial for precise segmentation while 75

achieving high inference speed. However, two key challenges 76

emerge in the context of zero-shot semantic segmentation. 77

First, incomplete annotations prevent the utilization of all the 78

information in an image and tend to bias the seen classes. Sec- 79

ond, transferring the vision-language matching capabilities to 80

closed-set segmentation models relies on knowledge distillation 81

techniques. Unfortunately, such approaches typically enforce 82

a consistent representation format, either spatially resolved or 83

non-spatially resolved (see (c) of Fig. 1), which limits the 84

ability to transfer CLIP’s knowledge from a single CLS token 85

to dense features within diverse segmentation architectures. 86

These limitations motivate us to propose CLIP-to-Seg (C2S) 87

distillation which is facilitated by a pseudo mask and latent 88

embedding generation. Different from image classification, 89

semantic segmentation requires both global and local infor- 90

mation for segmentation. Therefore, CLIP-to-Seg distillation 91

integrates global and local distillation to transfer CLIP’s zero- 92

shot generalization capabilities to the segmentation model as 93

shown in Fig. 1(d). Global distillation adaptively aggregates 94

dense features into one global feature based on their similarity 95

to global CLS tokens which are extracted from the whole image, 96
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Fig. 1: Comparisons between CLIP-to-Seg distillation and other methods. (a): Conventional one-stage zero-shot segmentation,
(b): Conventional two-stage zero-shot segmentation, where a proposer is trained and frozen CLIP is used to classify the
proposals. (c): Conventional knowledge distillation methods require the student and teacher models to be of the same type. (d):
Our CLIP-to-Seg distillation transfers the knowledge of CLIP to segmentation models where features with different sizes are
aligned and do not rely on CLIP during inference, resulting in high inference performance and efficiency.

and then performs efficient distillation between the global CLS97

token and the global feature. Local distillation aligns the CLIP98

CLS tokens extracted from class-specific crops, consisting of99

both seen and latent classes from the pseudo masks with the100

dense features from the corresponding regions. Under zero-shot101

settings, large amounts of areas are unannotated, leading to102

sub-optimal local distillation. To leverage the information from103

the entire image, we propose pseudo mask generation. This104

method utilizes the K-means algorithm to cluster the CLIP105

dense features from unannotated areas and further refines the106

results by merging clusters that likely belong to the same class.107

The merged results are added with the given seen labels to108

form the pseudo masks. To further increase the capabilities to109

distinguish between classes, we propose the latent embedding110

generation to synthesize the text embeddings for the latent111

classes. By concatenating with the seen text embeddings, these112

latent embeddings help differentiate features from unannotated113

areas and annotated areas, enabling further generalization for114

the closed-set segmentation model.115

Unlike existing approaches that adapt the CLIP visual116

encoder [5, 11] or ensemble with CLIP during inference117

[4, 10], our method can be seamlessly integrated into existing118

closed-set segmentation models without relying on the CLIP119

model or introducing additional computational parameters at120

inference. Our method also effectively leverages the strengths121

of powerful task-specific architectures. By decoupling from122

the fixed CLIP backbone, our approach allows these closed-123

set segmentation models to be adapted for zero-shot scenar-124

ios, thereby significantly enhancing their applicability and125

performance. Although global-local distillation is a common126

practice in knowledge distillation [14, 15], our method differs127

from existing approaches by transferring knowledge from128

a single token, the CLS token from CLIP, to the dense129

feature representations of the segmentation model. Our method130

achieves state-of-the-art performance on multiple zero-shot131

segmentation benchmarks when incorporated with powerful 132

segmentation models such as Segformer [16] and SegNeXt 133

[17]. In summary, our contributions are: 134

– We propose a novel CLIP-to-Seg distillation framework 135

that adopts a sparse-to-dense paradigm to transfer CLIP’s vision- 136

language matching capabilities to segmentation models. 137

– We propose a novel pseudo mask generation and latent 138

embedding generation to help the CLIP-distilled segmentation 139

model generalize well on unseen classes. 140

– Our method introduces no additional parameters or compu- 141

tational overhead, while being fully plug-and-play with existing 142

closed-set segmentation models for zero-shot capabilities, 143

achieving state-of-the-art performance on multiple benchmarks. 144

II. RELATED WORK 145

Closed-set Semantic Segmentation: Closed-set segmentation 146

assumes fully annotated images and focuses on the performance 147

of predefined categories within a specific dataset. Existing 148

methods are typically divided into pixel-level classification 149

and mask-level classification. In pixel-level classification, 150

FCN [18], the first fully convolutional network for end-to- 151

end semantic segmentation, established the paradigm. Since 152

FCN, many works, e.g., DeepLab series [19, 20], Deformable 153

convolution [21], aim to enlarge the receptive field to further 154

improve the performance of pixel-level methods. With the 155

introduction of ViT [22], many approaches [16, 17, 23] 156

replaced the conventional convolutional backbone with self- 157

attention-based models, achieving remarkable performance. An 158

alternative approach treats semantic segmentation as a mask 159

classification task. Mask2Former [24] and MaskFormer [25] are 160

notable examples of this approach. Specifically, these models 161

first generate queries corresponding to latent classes. These 162

queries are then decoupled to perform classification and mask 163

prediction tasks separately. Our method is applied to the more 164
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challenging task of zero-shot segmentation, which requires165

fewer annotations than closed-set segmentation.166

Knowledge Distillation: Knowledge distillation aims to trans-167

fer the capability of a larger teacher model to a student model168

for comparable performance to the teacher model with a169

smaller model size [26]. Existing methods are categorized170

into logits-based [27–29], feature-based [30, 31], and relation-171

based approaches [14, 32]. With the rapid development of172

vision-language models [6, 33, 34], certain methods aim to173

distill vision-language matching capabilities into other models174

[26, 30, 35]. Although global-local knowledge distillation has175

been explored in prior works [14, 15], the novelty of our176

approach lies in distilling knowledge from a single token,177

namely, the CLS token from CLIP, into dense features of the178

segmentation model. This contrasts with existing methods that179

require both teacher and student to share the same feature180

structure, i.e., either dense-to-dense or sparse-to-sparse.181

Zero-shot Semantic Segmentation: Since closed-set segmen-182

tation requires pixel-level annotations, research focusing on183

reducing label dependency has gained significant attention.184

Before the VLMs, e.g., CLIP, several works tried to bridge the185

gap between vision and language by projecting the features186

from vision models to the semantic space [36]. The emergence187

of large-scale VLMs, such as CLIP [6], has revolutionized188

zero-shot tasks. Due to their impressive zero-shot ability,189

researchers aim to transfer this ability to downstream tasks.190

Leveraging efficient tuning methods [37, 38], existing methods191

are categorized into one-stage and two-stage approaches. One-192

stage methods introduce trainable parameters or modules to193

adapt VLMs for semantic segmentation [4, 5, 8, 9, 39–44].194

Two-stage methods train a mask-proposer [24] to propose195

objects in an image and utilize these objects to finetune the196

VLMs or directly classify them [13, 41, 45, 46]. Besides197

zero-shot semantic segmentation, open-vocabulary semantic198

segmentation also aims to generalize to classes that do not199

appear during training [47–51]. However, unlike zero-shot200

methods that are trained on partially labeled data and aim to201

discover unannotated categories within the same dataset, open-202

vocabulary methods are trained on fully labeled datasets and203

focus on transferring to new categories in different datasets.204

Different from both types of CLIP-adapting paradigms205

that rely heavily on CLIP during inference, we propose a206

CLIP-to-Seg distillation method to transfer the vision-language207

capability to any pixel-level segmentation model, enabling them208

to employ zero-shot semantic segmentation without CLIP in209

inference. Although some methods distill the text relationships210

to the vision space [14, 26], their methods work under a relaxed211

condition where all the text embeddings can be accessed.212

Meanwhile, some object detection methods also try to distill the213

knowledge from CLIP to detection models [52–55]. However,214

their methods need to train an additional pseudo mask proposer215

and provide a detailed description of the input image [52, 53] or216

need to know all the names of classes [54, 55], which violates217

the setting of zero-shot learning. Besides, some methods [56]218

leverage CAM-based techniques to generate pseudo masks.219

However, our method relies solely on clustering without prior220

knowledge of the number or identity of the classes.221

III. METHODS 222

Task Definition: We first define the task of Zero-shot Semantic 223

Segmentation (ZSS). Formally, let D =
{

Ii,Yi
s

}M

i=1
represent a 224

dataset, where I are the input images, Ys are the corresponding 225

pixel-level annotations without the annotations of unseen 226

classes, and A ∈ RN×D is a set of text embeddings for all 227

categories, with N representing the total number of classes and 228

D the dimensionality of the embeddings. The text embeddings 229

A, derived from the CLIP text encoder by applying the 230

prompt template (e.g., “a photo of”) with the class name, are 231

partitioned into two disjoint subsets: seen class text embeddings 232

As ∈ RNs×D and unseen class text embeddings Au ∈ RNu×D, 233

where As ∩ Au = ∅ and Ns + Nu = N . Since seen 234

and unseen classes frequently co-occur in images, removing 235

those containing unseen categories is impractical for training. 236

Therefore, in ZSS, only the annotations for unseen classes are 237

removed. ZSS can be categorized into two settings based on 238

the availability of unseen class text embeddings Au: Inductive 239

ZSS, where unseen class text embeddings are unavailable 240

during training, and Transductive ZSS, where unseen class text 241

embeddings are accessible. In both settings, model performance 242

is jointly evaluated on both seen and unseen categories during 243

inference. In this work, we adopt our method for both settings. 244

As some of the annotations are removed and the names or 245

the number of these classes are unknown during training, we 246

define the classes in these areas as latent classes. 247

A. Basic Idea and Method Overview. 248

Semantic segmentation requires pixel-wise classification, 249

which differs from image classification which mainly relies on 250

global information. However, existing closed-set segmentation 251

models are limited by their fixed label space, making them 252

difficult to generalize to classes that may not appear in the 253

training dataset. To address this issue, we leverage the strong 254

vision language CLIP and distill its knowledge into segmen- 255

tation models. Unlike image classification, which only needs 256

global representations, semantic segmentation also demands 257

fine-grained local information. Thus, our knowledge distillation 258

framework consists of both global and local knowledge transfer, 259

and pixel-level supervision to enhance the segmentation: 260

EI∈D

{
Lg

(
fc(I)||fs(I)

)}
+ EI∈D,Ỹu=M(I)

{
Ll

(
fc(I|Ỹu) || fs(I|Ỹu)

)}
+ EI,Ys∈D

{
Ll

(
fc(I|Ys) || fs(I|Ys)

)}
+ EI,Ys∈D,Ỹu=M(I),Ỹ=Ys+Ỹu

{
Ls

(
fs(I), Ỹ

)}
(1)

where Lg and Ll represent the global and local knowledge 261

distillation losses, respectively. Ls denotes the pixel-level loss 262

that supervises the prediction using pseudo masks Ỹ, which 263

are composed of the provided seen labels Ys and the generated 264

pseudo masks Ỹu for unannotated regions. fc and fs denote 265

the CLIP model and the segmentation model, respectively. I 266

denotes the input image, and Ys corresponds to the pixel- 267

level annotation mask. M indicates the functions to generate 268

pseudo masks for latent classes in the unannotated areas, and 269

Ỹu indicates the generated pseudo masks. To achieve this, 270
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Fig. 2: Overview of the CLIP-to-Seg distillation framework. First, the input image is passed through a frozen CLIP visual
encoder to obtain both global and local CLS tokens, as well as pseudo masks, which consist of the given seen labels and
generated masks for latent classes. The same image is then passed into a trainable segmentation model to extract dense features.
CLIP’s vision-language matching capabilities are transferred through the proposed CLIP-to-Seg distillation. To provide additional
supervision for latent classes, we propose a latent embedding generation method to synthesize text embeddings for latent classes.
During inference, our method does not introduce any additional modules or parameters to the segmentation model and relies
solely on the segmentation model, resulting in high inference efficiency. All text embeddings are derived from the CLIP text
encoder by applying a fixed prompt template (e.g., “a photo of a [class name]”) to each category.

we propose CLIP-to-Seg distillation, a simple yet effective271

approach to generalizing any closed-set segmentation model to272

classes that do not appear in the training. The core idea can be273

concluded in Eq. 1. The first term distills global knowledge274

from CLIP by aligning the global CLS token with all dense275

features from the segmentation model. The second and third276

terms focus on local knowledge distillation. However, under277

zero-shot settings, many image regions remain unannotated,278

making direct local supervision sub-optimal. To address this,279

the second term mines latent classes from the unannotated280

regions and aligns the corresponding local CLS tokens with281

dense features extracted from these discovered regions. The282

third term leverages seen-class annotations by masking the input283

image accordingly and feeding it into the CLIP visual encoder,284

extracting local CLS tokens and aligning them with the features285

of the masked regions. Finally, the fourth term provides286

pixel-wise supervision using both ground-truth masks for seen287

classes and pseudo masks for unannotated regions. Each pixel288

is treated as an individual prediction target, enabling the model289

to learn fine-grained semantic distinctions. This supervision290

can be implemented with standard pixel-level losses, such as291

cross-entropy or focal loss, depending on the distribution and292

confidence of the labels. The overview of our method is shown293

in Fig. 2, we first generate pseudo masks for latent classes Ỹu294

in unannotated regions by passing an input image through a295

frozen CLIP visual encoder and clustering the output features296

(M ), as described in Sec. III-B. We then feed the same image297

into the CLIP visual encoder and a trainable segmentation298

model to obtain CLS tokens (including those for latent classes)299

and dense features, serving as teacher and student features,300

respectively. Next, we apply the proposed CLIP-to-Seg (C2S)301

distillation between CLS tokens and dense features to transfer302

CLIP’s knowledge to the segmentation model, as illustrated303

in Sec. III-C (first, second, and third term in Eq. 1). However,304

relying solely on C2S distillation may lead to suboptimal 305

performance as unannotated areas can not be fully utilized. To 306

address this, we use a latent embedding generation method 307

(Sec. III-D) to synthesize text embeddings for latent classes. 308

These synthetic text embeddings help distinguish latent from 309

seen classes, providing pixel-level supervision for unannotated 310

regions, aided by the pseudo masks (final term in Eq. 1). 311

B. Pseudo Mask Generation 312

In zero-shot settings, the annotations of unseen classes are 313

removed, making the input image not fully utilized. To address 314

this issue, we propose pseudo mask generation (M in Eq. 1) 315

to produce the labels that contain both the given seen labels 316

and the pseudo masks for latent classes. Given an input image, 317

we first feed the image into the frozen CLIP visual encoder 318

to obtain the dense features of CLIP Cd (the output features 319

excluding the first CLS token). Then, we initialize seeds Cinit 320

by applying sliding windows of various sizes to average these 321

dense features: 322

Cinit =


i+k−1∑
u=i

j+k−1∑
v=j

Cd[u, v]

k2

∣∣∣∣∣∣ Cd = 0 if Ys[u, v] ∈ As


(2)

where I = {0, [k/2], · · · , [Hd − k]}, J = 323

{0, [k/2], · · · , [Wd − k]}, [·] denotes the rounding 324

operation where Cd represents the CLIP visual 325

dense features. i ∈ {0, [k/2], [k], ..., [Hd − k]} and 326

j ∈ {0, [k/2], [k], ..., [Wd − k]} denote the stride of the 327

sliding windows. k ∈ K indicates the size of different sliding 328

windows. Here, Hd and Wd represent the size of Cd, and [·] 329

denotes the rounding operation. Based on Cinit, we apply 330

K-Means clustering to the unannotated regions of Cd and 331

obtain the clustering results M∈ RU ′×H×W and the updated 332

seed features Sd ∈ RU ′×D where U ′ indicates the number 333
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Algorithm 1 Mask Merging Algorithm

1: Input: Clustered masks M ∈ RU ′×H×W , seed features
Sd ∈ RU ′×D, similarity threshold λ

2: Output: Merged mask Ỹu

3: Initialize similarity matrix G← cos(Sd,S
⊤
d )

4: Set diagonal elements: Gi,i ← −∞, for all i
5: Initialize merged mask Ỹu ← ∅
6: gmax ← max(G)
7: while gmax ≥ λ do
8: i← argmax(G) // Index of the highest similarity
9: I ← {j | G[i, j] > λ} // Similar masks to be merged

10: mmerged ←
∑

j∈IM[j]

11: Ỹu ← Ỹu ∪ {mmerged}
12: G[I, :]← −∞; G[:, I]← −∞
13: gmax ← max(G)
14: end while
15: return Ỹu

of unique masks, and D is the number of channels. Finally,334

we merge the clustering results as described in Algorithm 1.335

Formally, the algorithm takes the Sd and M as input. First,336

we compute the similarity matrix G by computing the cosine337

similarity among the updated seed features Sd. It iteratively338

selects the most similar pair of masks, determined by the339

maximum similarity value gmax in G, and adds all masks340

with similarity greater than λ. The added mask is appended341

to the result set Ỹu. Once a mask is added, its similarity342

values in G are set to −∞ to prevent selection next time.343

This process continues until no similarity value exceeds the344

threshold λ, and the returned Ỹu will serve as the labels for345

latent classes. Finally, we add the given seen labels Ys and346

the generated labels for latent classes Ỹu as the pseudo masks347

Ỹ. Moreover, without relying on annotations, the method348

effectively discovers latent classes through distinct cluster349

centers, as illustrated in Fig.6 in Sec.IV-D.350

C. CLIP-to-Seg Distillation351

The core idea of CLIP-to-Seg (C2S) distillation is to align352

the CLS tokens that contain the vision-language matching353

capabilities with the dense features from segmentation models.354

The CLS tokens include two types: global CLS tokens, which355

are extracted from the whole image, and local CLS tokens,356

which are extracted from images masked by the labels. While357

existing methods typically perform knowledge transfer in358

a dense-to-dense [29, 30] or sparse-to-sparse [26] fashion,359

our method uniquely operates in a sparse-to-dense manner,360

where a single CLS token from the CLIP visual encoder is361

utilized to transfer semantic knowledge to the dense features362

of segmentation models. Before introducing the CLIP-to-Seg363

distillation, we first introduce how the CLS token is extracted364

as shown in the top of Fig. 3. To obtain the global CLS tokens365

Cg ∈ R1×D, we simply input the images into the CLIP visual366

encoder. To obtain the local CLS tokens, we separate the pseudo367

mask Ỹ into non-overlapping class-specific masks which are368
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used to mask the input image I into class-specific masked 369

images I(U+O)×H×W
l , 370

Il = I⊙ 1(Ỹ = l), l ∈ Ỹ, (3)

where ⊙ indicates the per-pixel multiplication (image masking). 371

Each class-specific masked image Il is then passed through the 372

CLIP visual encoder to extract the corresponding local CLS 373

tokens Cl ∈ R(O+U)×D where O and U indicate the number 374

of seen and latent classes, respectively. 375

Once we obtain Cg and Cl, we can apply the CLIP-to- 376

Seg distillation which consists of two components: global 377

distillation and local distillation. We first introduce global 378

distillation (the first term in Eq. 1), which transfers CLIP’s 379

knowledge by aligning global CLS tokens with the global 380

feature. Specifically, as illustrated in the top right of Fig. 4, the 381

input image is passed through a trainable segmentation model 382

to extract dense features FD×H×W , where H and W are the 383

height and width of the feature map, respectively. To compute 384

the global feature, F is reshaped to D×L, where L = H×W . 385

The similarity W between F and the global CLS token Cg 386

is computed as W = Softmax(
C⊤

g F
√
D
), where W1×L ∈ [0, 1], 387

and the softmax is applied along the second dimension of W. 388

W represents the similarities between the dense features of 389

the segmentation model and the CLS token, which includes 390

vision-language alignment capabilities. Higher similarity values 391

indicate that the dense features are more semantically aligned 392

with the object described by the CLS token. This similarity is 393

then used to weigh the contributions of each dense feature in 394

generating the global feature Fg , where Fg = W · F⊤. 395

Inspired by the memory buffer mechanism in contrastive 396

learning, which provides additional negative pairs [57], we 397

introduce a CLS token bank to store CLS tokens generated 398

during previous iterations. Specifically, let V =
{

Ci
g

}B

i=0
399

represent the CLS token bank, where each Ci
g corresponds 400

to a CLS token collected from earlier training steps and B 401

indicates the size of the bank. In each iteration, before updating 402

the model parameters, we enqueue the current Cg into V and 403

dequeue the oldest one. Finally, we align the global feature 404
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Fig. 4: The process of CLIP-to-Seg distillation.

with the CLS token bank by InfoNCE [1],405

Lg =
exp(F⊤

g Cg/τ)∑B
j=0 exp(F

⊤
g Cj)/τ)

, (4)

where Cj ∈ V , and τ denotes the temperature used for406

contrastive loss. However, due to CLIP’s focus on the global407

context, it may overlook less prominent classes, failing to408

transfer accurate semantics to the dense features associated409

with them. To remedy this, we propose the local distillation410

methods, as shown in the bottom of Fig. 4.411

Local distillation (the second and third term in Eq. 1) seeks412

to transfer semantics overlooked by the global CLS tokens to413

their corresponding dense features by aligning local features414

with the local CLS tokens Cl as shown in the bottom of Fig.415

4. Specifically, given the pseudo mask Ỹ, we first mask the416

dense features from these areas and average the class-specific417

features to obtain the local features Fl ∈ R(O+U)×D:418

Fl =

{∑
H,W F[1(yi = l)]∑
H,W [1(yi = l)]

∣∣∣yi ∈ Ỹ

}
, (5)

where 1(yi = l) is an indicator function that selects pixels419

belonging to class l. Finally, given Cl, we apply InfoNCE [1]420

to align the local features Fl with the local CLS tokens Cl,421

Ll =

O+U−1∑
i=0

exp(f⊤i ci/τ)∑O+U−1
j=0 exp(f⊤i cj)/τ)

, (6)

where f ∈ Fl and c ∈ Cl. By transferring CLIP’s knowledge422

to segmentation models through C2S distillation, the model’s423

generalization is improved, reducing overfitting to seen classes.424

D. Latent Embedding Generation425

Although CLIP’s vision-language matching capabilities are426

effectively transferred to segmentation models, the inaccessibil-427

ity of unseen text embeddings leaves large portions of dense428

features without pixel-level supervision, resulting in suboptimal429

optimization of the segmentation model. To address this, we430

propose latent embedding generation (the fourth term in Eq. 1), 431

which generates synthetic text embeddings for latent classes 432

by calibrating the local features with their corresponding local 433

CLS tokens, as shown in the bottom of Fig. 3. 434

After obtaining the generated mask for latent classes Ỹu, 435

we use Eq. 5 to replace Ỹ with Ỹu to generate local features 436

Fu ∈ RU×D for the latent classes. We then feed Fu into 437

a transformer decoder as query and input the global and 438

local CLS tokens as key and value to generate the latent text 439

embeddings A′
u. The transformer decoder is chosen because 440

the CLS token for latent classes, while possessing vision- 441

language matching capabilities, lacks the discriminative power 442

required for segmentation. Conversely, the local features Fu for 443

latent classes offer strong discriminative capabilities but lack 444

vision-language matching. The transformer decoder integrates 445

these complementary strengths, producing more representative 446

embeddings for latent classes. The generated text embeddings 447

A′
u are treated equivalently to seen text embeddings As and 448

are used to serve as the classifier to distinguish between the 449

seen and latent classes. Formally, the class scores for seen and 450

latent categories are Xs = α ·F⊤ ·As and Xu = β · cos(F,A′
u), 451

where α and β are hyperparameters that control the scale 452

of latent classes. Note that, since the generated labels Ỹu 453

and generated text embeddings A′
u for latent classes are not 454

entirely precise, cosine similarity helps prevent overemphasis 455

on misclassification and aids in distinguishing between seen and 456

latent classes. We then concatenate the logits for both seen and 457

unseen classes as Xlogits = cat(Xs,Xu) ∈ R(Ns+U)×H×W , 458

where ‘cat’ denotes concatenation along the class dimension. 459

Finally, Ỹ is used for pixel-level supervision (the fourth term 460

in Eq. 1) of the dense features by: 461

Ls = Lfocal(Xlogits, Ỹ)+Ldice(Xlogits, Ỹ)+Lce(Xlogits, Ỹ).
(7)

where Lfocal refers to the focal loss [58], Ldice indicates the 462

DICE loss [5], and Lce denotes the cross-entropy loss. When 463

only seen classes are present in an image, latent generated 464

text embeddings will not be generated, and only seen text 465

embeddings are used for training. 466

In this method, semantics are implicitly leveraged through the 467

vision-language alignment previously established by the C2S 468

distillation. While the actual text embeddings for latent classes 469

are inaccessible, the model uses local visual features as a proxy 470

to generate pseudo-text embeddings via a transformer decoder. 471

These visual features, enhanced with local CLS tokens, serve to 472

bridge the semantic gap by approximating the structure of real 473

text embeddings. Thanks to the C2S-induced alignment, even 474

these visually derived embeddings retain semantic structure 475

aligned with CLIP’s space, enabling the model to separate 476

seen and latent semantics. Although not equivalent to pure text 477

embeddings, this design allows the model to distinguish latent 478

categories without requiring explicit textual supervision. 479

E. Training Objective and Inference 480

Training Objective: To recap, the training objectives of CLIP- 481

to-Seg distillation are: 482

L = Lg + Ll + Ls, (8)
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TABLE I: Comparison with state-of-the-art methods under inductive settings where bold and underline indicate the best and
the second-best performance.

Models Backbone PASCAL VOC COCO-Stuff PASCAL Context

hIoU sIoU uIoU hIoU sIoU uIoU hIoU sIoU uIoU

SPNet [59]

ResNet101 [60]

26.1 78.0 15.6 14.0 35.2 8.7 - - -
ZS3 [61] 28.7 77.3 17.7 15.0 34.7 9.5 15.8 20.8 12.7

CaGNet [36] 39.7 78.4 26.6 18.2 33.5 12.2 21.2 24.1 18.5
SIGN [62] 41.7 75.4 28.9 20.9 32.3 15.5 - - -
Joint [63] 45.9 77.7 32.5 - - - 20.5 33.0 14.9

ZegFormer [4] 73.3 86.4 63.6 34.8 36.6 33.2 - - -

Zzseg [13]

ViT-B [22]

77.5 83.5 72.5 37.8 39.3 36.3 - - -
ZegCLIP [5] 84.3 91.9 77.8 40.8 40.2 41.4 49.9 46.0 54.6
DeOP [10] 80.8 88.2 74.6 38.2 38.0 38.4 - - -

OTSeg+ [64] 87.1 93.3 81.6 41.5 41.3 41.8 57.7 55.2 60.4
CLIP-RC [11] 88.4 92.8 84.4 41.2 40.9 41.6 51.9 47.5 57.3

Ours

SegNeXt-B [17] 89.3 91.2 87.4 42.5 43.1 41.9 57.6 53.3 62.8
Setr-B [23] 90.7 92.3 89.2 44.8 43.8 45.9 56.3 52.4 60.8

Segformer-B4 [16] 88.7 91.3 86.2 43.9 43.2 44.7 58.0 52.6 64.5
ViT-B [22] 90.7 92.1 89.4 43.2 43.6 42.8 57.1 51.9 63.5

TABLE II: Comparison with state-of-the-art methods under tranductive setting where bold and underline indicate the best and
the second-best performance, and ST indicates self-training [5, 64].

Models Backbone PASCAL VOC COCO-Stuff PASCAL Context

hIoU sIoU uIoU hIoU sIoU uIoU hIoU sIoU uIoU

Zzseg + ST [13]

ViT-B [22]

79.3 79.2 78.1 41.5 39.6 43.6 - - -
ZegCLIP + ST [5] 91.1 92.3 89.9 48.5 40.7 59.9 54.0 47.2 63.2

FreeSeg [43] 86.9 82.6 91.8 45.3 42.2 49.1 - - -
OTSeg+ ST [64] 94.4 94.3 94.3 49.8 41.4 62.6 59.8 54.0 67.0

CLIP-RC +ST [11] 93.0 93.9 92.2 49.7 42.0 60.8 55.1 48.1 64.5

Ours + ST

SegNext-B [17] 89.5 91.0 88.0 48.5 43.7 54.5 60.5 54.0 68.7
Setr-B [23] 92.4 93.1 91.7 51.5 44.4 61.3 58.0 51.7 65.9

Segformer-B4 [16] 89.0 91.6 86.6 50.8 43.3 61.4 60.0 52.3 70.3
ViT-B [22] 91.0 92.1 89.9 50.1 43.4 59.2 58.1 52.2 65.6

TABLE III: Efficiency comparisons with other methods.

Method Parameter ↓ GFLOPS ↓ FPS ↑

Zsseg [13] 61.1 M 1916.7 4.2
ZegFormer [4] 60.3 M 1829.3 6.8
ZegCLIP [5] 13.8 M 61.1 25.6
OTSeg+ [64] 13.8 M 61.9 22.5

Ours+SegNeXt [17] 32.0 M 33.5 40.9
Ours+SETR [23] 91.0 M 109.0 20.8

Ours+Segformer [16] 65.7 M 60.7 23.0

TABLE IV: Ablations on proposed modules by Segformer-B4.

Methods hIoU sIoU uIoU

baseline (Segformer-B4) 11.2 41.3 6.4
baseline + latent embedding 20.2 41.4 13.4

baseline + distillation 38.8 41.2 36.6
baseline + distillation + latent embedding 42.3 41.9 42.7

Inference: Since the vision-language matching capability483

has already been transferred from CLIP to the backbone484

during training, we do not rely on CLIP at inference. Instead,485

we directly use the text embeddings from the text encoder486

as classifier weights, eliminating the need for latent class487

embeddings. Moreover, as the number of classes in a dataset488

is fixed, the text embeddings can be precomputed offline,489

introducing no additional computational overhead compared to490

standard segmentation models under the closed-set setting and491

methods that require additional adapters or visual prompts for492

TABLE V: Ablations on global and local distillation.

Distillation hIoU sIoU uIoU
global local

- - 20.2 41.4 13.4
- ✓ 36.3 41.9 32.1
✓ - 40.8 41.6 40.1
✓ ✓ 42.3 41.9 42.7

TABLE VI: Ablations on different distillations.

Distillation hIoU sIoU uIoU

Cosine Similarity [65] 37.6 41.4 34.4
L2 Loss [66] 17.8 18.4 17.3
Froster [26] 37.2 41.7 33.6

Our distillation 42.3 41.9 42.7

adapting CLIP to ZSS, e.g., ZegCLIP [5]. 493

IV. EXPERIMENTS AND DISCUSSIONS 494

Dataset: To evaluate the effectiveness of our method, we 495

select three representative benchmarks: PASCAL VOC [67], 496

COCO-Stuff [68], and PASCAL Context [69] to conduct our 497

experiments on zero-shot semantic segmentation (ZSS). The 498

split of seen and unseen categories follows the setting of the 499

previous works [5]. PASCAL VOC consists of 10,582 images 500

for training and 1,449 images for validation. Note that we 501

convert the ‘background’ category to the ‘ignored’. For this 502
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TABLE VII: Ablations on global and local CLS tokens in
latent embedding generation by Segformer-B4.

Calibration hIoU sIoU uIoU
global local

- - 38.8 41.2 36.6
- ✓ 41.9 41.3 42.6
✓ - 41.7 41.4 42.1
✓ ✓ 42.3 41.9 42.7

dataset, there are 15 seen categories and 5 unseen categories.503

COCO-Stuff contains 171 categories totally. As in previous504

settings, 171 categories are split into 156 seen and 15 unseen505

categories. Besides, for the training dataset, there are 118,287506

images and 5,000 images for testing. PASCAL Context includes507

4,996 images for training and 5,104 images for testing. For508

the zero-shot semantic segmentation task, the dataset is split509

into 49 seen categories and 10 unseen categories.510

Implementation Details: The proposed methods are imple-511

mented on the MMsegmentation. The CLIP model applied in512

our method is based on the ViT-B/16 model. All the experiments513

are conducted on 8 V100 GPUs, and the batch size is set to514

16 for all three datasets. For all three datasets, the size of the515

input images is set as 512 × 512. The iterations are set to516

20K, 40K, and 80K for PASCAL VOC, PASCAL Context,517

and COCO-Stuff, respectively. The optimizer is set to AdamW518

with the default training schedule. In addition, the size of519

CLS token banks is set as 24. All other settings follow the520

original segmentation models. To evaluate the performance of521

both seen and unseen categories, we apply the harmonic mean522

IoU (hIoU) following previous works [5]. The relationship523

between mIoU and hIoU is hIoU = 2·sIoU ·uIoU
sIoU+uIoU where sIoU524

and uIoU indicate the mIoU of the seen and unseen categories,525

respectively. Besides the hIoU, sIoU and uIoU are also526

applied. Frames Per Second (FPS) is tested on RTX 3090.527

A. Comparison with State-of-the-arts528

We evaluate our method by distilling CLIP into three529

representative closed-set segmentation models: SegNext, SETR,530

and Segformer. As shown in Table I, our method consistently531

outperforms existing state-of-the-art approaches across three532

challenging benchmarks: PASCAL VOC, COCO-Stuff, and533

PASCAL Context. For example, our method achieves significant534

improvements in hIoU over CLIP-RC and OTSeg+, with535

margins of 2.3%, 3.3%, and 0.3% on the respective datasets.536

These gains mainly stem from improved generalization to537

unseen categories. On COCO-Stuff, our method obtains a538

4.3% higher uIoU than the best-performing baseline. Similar539

trends can be observed across all datasets, indicating that our540

model avoids overfitting to seen categories and better captures541

transferable semantics. To further validate the robustness of542

our approach, we also conduct experiments using ViT-B as the543

backbone. As reported in the last row of Table I, our method544

still achieves highly competitive performance, confirming its545

effectiveness regardless of architecture.546

Table II further compares our method under the inductive547

setting with self-training (ST). Our method attains competitive548

or superior results across all three benchmarks. Notably, we549

TABLE VIII: Ablation on latent embedding and prototype
calibrator by Segformer-B4.

Feature Calibrator hIoU sIoU uIoU

Prototypes - 41.0 41.5 40.5
Prototypes MLP 41.5 41.3 41.8

CLS tokens - 40.2 41.5 38.9
CLS tokens MLP 40.9 41.5 40.3

Prototypes + CLS tokens Transformer 42.3 41.9 42.7

achieve the best hIoU and uIoU on the PASCAL Context 550

dataset, indicating strong generalization under limited supervi- 551

sion. These results collectively demonstrate the advantage of 552

distilling vision-language knowledge into segmentation models 553

and confirm the broad applicability of our framework under 554

both standard and self-training settings. 555

We also provide a comparison of the computational cost and 556

efficiency of our method with previous methods as shown in 557

Table. III. We use a 512 × 512 image as input, compared with 558

the two-stage methods (first and second row in the table), our 559

method can achieve a much higher inference speed and much 560

lower GFLOPS. Compared with the methods that only add a 561

few trainable parameters, though our trainable parameters are 562

higher than theirs, our method has high flexibility based on the 563

segmentation model. For example, when we choose SegNeXt, 564

an efficient segmentation model, our GFLOPS are nearly 50% 565

of the SOTA one-stage methods, and achieve higher speed. 566

B. Ablation Studies 567

To evaluate the effectiveness of our method, we do ablation 568

studies on the COCO-Stuff dataset using 40K training iterations 569

with the same hyperparameters. Segformer-B4 is chosen 570

because of its balance in efficiency and performance. Despite 571

the shorter training schedule, the results also demonstrate the 572

effectiveness of our method. 573

Ablation studies on the proposed methods: Table IV 574

summarizes the ablation study of our proposed modules using 575

SegFormer-B4. Incorporating the latent embedding module 576

alone yields moderate gains (hIoU from 11.2% to 20.2%, 577

uIoU from 6.4% to 13.4%) by encouraging semantic expansion 578

beyond limited seen categories. However, without explicit 579

vision–language alignment, it struggles to substantially improve 580

generalization to unseen classes. In contrast, our CLIP-to-Seg 581

(C2S) distillation, although implemented with a single loss, 582

is deliberately designed to transfer CLIP’s vision–language 583

matching capability from a global token to dense features, 584

enabling pixel-level understanding rather than serving as a 585

simple auxiliary loss. This results in a dramatic boost in 586

zero-shot segmentation performance. When both modules 587

are combined, the model achieves the best overall results. 588

Remarkably, all results are obtained within 40K iterations, half 589

the standard budget, yet surpass prior state-of-the-art methods. 590

Ablation studies on global and local distillation: We 591

evaluate the individual and combined effects of global and 592

local distillation in Table V. Applying either global or local 593

distillation alone improves performance over the baseline, par- 594

ticularly on unseen classes (uIoU), highlighting their individual 595

effectiveness. Notably, combining both strategies leads to the 596
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TABLE IX: Ablation studies
on the size of token banks.

Token bank size hIoU sIoU uIoU

0 41.0 41.5 40.4
2 41.5 41.7 41.4
6 42.3 41.9 42.7

14 40.9 41.3 40.5

TABLE X: Ablation studies on
the size of windows in pseudo
mask generation.

Window Size hIoU sIoU uIoU

3 41.2 41.3 41.1
7 41.8 41.3 42.3

3,7 42.3 41.9 42.7

TABLE XI: Ablation studies
on the feature aggregation in
global distillation.

Aggregation hIoU sIoU uIoU

mean 38.4 41.1 35.9
max 42.0 41.1 42.9

attention 42.3 41.9 42.7

TABLE XII: Ablation studies on
other pseudo mask generation.

Methods GFLOPs hIoU sIoU uIoU

Mask Proposal [13] 17.6 41.3 41.4 41.2
Panoptic cut [48] 16.5 41.6 41.5 41.7

Ours 17.7 42.3 41.9 42.7

best overall performance across all metrics, demonstrating597

their complementary benefits in enhancing vision-language598

alignment. In contrast, approaches lacking such alignment599

struggle to generalize effectively to unseen categories.600

Ablation studies on different distillations: We use contrastive601

learning to distill the knowledge from CLIP in C2S distillation,602

here, we try to use different distillation methods to prove the603

effectiveness of our method as shown in Table VI. First, we604

change the contrastive distillation to the cosine similarity and605

find that though the sIoU achieves similar performance, the606

uIoU drops to 34.4%. Then we change the cosine similarity607

to the direct L2 loss between the CLS tokens and the global608

features and find that both sIoU and uIoU drop drastically.609

Finally, we apply the residual feature distillation proposed in610

[26] and find that though a similar sIoU can be achieved, its611

uIoU is 9.1% lower than our method.612

Ablation studies on the latent embedding generation: In this613

experiment, we want to clarify the effectiveness of the CLS614

tokens in the latent embedding generation as shown in Table615

VII. First, we set the methods without latent embedding as the616

baseline. Then we use only local CLS tokens to calibrate the617

latent text embeddings and find that the hIoU improves due to618

the 6.0% improvements in uIoU. Then, we only use the global619

CLS tokens, we find that compared with local CLS tokens, the620

hIoU drops 0.2% due to the uIoU decrease.621

Besides, we also conduct experiments on how to generate622

the latent text embeddings as shown in Table VIII. First, we use623

the local features Fu for latent classes directly as the latent text624

embeddings without any generator. Compared with our method,625

we find that the performance drops due to the uIoU. Then,626

we use an MLP as the generator to replace the transformer627

decoder generator to evaluate if the interaction between the628

dense features and the CLS tokens is important. We find that629

compared with using only Fu the uIoU increases but is still630

lower than our method due to the lower IoU for unseen classes.631

Next, we directly apply the local CLS token as the latent text632

embeddings and find that the hIoU drops drastically to 40.2%633

from 42.3%, and adding an MLP can slightly increase the634

performance. Compared with the transformer decoder which635

combines the merits from the local features Fu and the CLS636

token, all other methods achieve sub-optimal performance.637

Ablation studies on the token bank size: Table IX presents the638

ablation study on the impact of token bank size on segmentation639

TABLE XIII: Experiments on the mask generation.

Classes unseen seen all

mIoU 58.5 53.1 49.5

performance, measured by harmonic IoU (hIoU), seen IoU 640

(sIoU), and unseen IoU (uIoU). The experiments demonstrate 641

that the inclusion of a token bank significantly improves 642

performance compared to not using a token bank (size 0). The 643

optimal token bank size is found to be 6, achieving the highest 644

hIoU (42.3%), sIoU (41.9%), and uIoU (42.7%). However, 645

increasing the token bank size beyond this optimal point (e.g., 646

size 14) leads to a sub-optimal performance. 647

Ablation studies on the size of K-Means: Table X summarizes 648

the ablation study on the effect of window size K in mask 649

generation. When using a single window size, a larger window 650

(size 7) outperforms a smaller one (size 3), achieving 41.8% 651

hIoU, 41.3% sIoU, and 42.3% uIoU. Notably, combining 652

multiple window sizes (3 and 7) yields the best performance 653

across all metrics, with 42.3% hIoU, 41.9% sIoU, and 42.7% 654

uIoU. This result highlights the effectiveness of multi-scale 655

aggregation in capturing complementary spatial information, 656

which enhances the model’s segmentation capability. 657

Ablation studies on feature aggregation in global distillation: 658

Table XI shows an ablation study on feature aggregation 659

strategies, including mean pooling, max pooling, and attention- 660

based aggregation. Mean pooling performs the worst due to 661

over-smoothing, while max pooling improves performance by 662

emphasizing the strongest responses. Attention-based aggre- 663

gation achieves the best results (42.3% hIoU, 41.9% sIoU, 664

42.7% uIoU) by dynamically aggregating features, effectively 665

balancing seen and unseen class contributions. 666

Comparison between other pseudo mask generation and 667

our method: Table XII demonstrates the effectiveness of our 668

pseudo mask generation strategy. Unlike prior methods relying 669

on latent class names [53–55], which violate the zero-shot 670

setting, our approach requires no class-specific information. 671

Compared to Mask Proposal and Panoptic Cut, our method 672

achieves the highest hIoU with comparable GFLOPs, achieving 673

a strong balance between accuracy and efficiency. 674

C. Accuracy of the generated masks for latent classes 675

Readers may wonder if the generated masks are accurate 676

enough to serve as the pseudo masks for latent classes. 677

Therefore, we conduct an experiment on the VOC dataset 678

[67], which contains 20 classes. We first split the dataset into 679

seen classes (15 classes) and unseen classes (5 classes). Since 680

the generated masks lack class labels, we convert the ground 681

truth masks into binary masks. During evaluation, the generated 682

mask with the highest IoU is selected as the prediction. The 683

IoU metric is then used to assess the alignment between the 684

selected generated mask and the corresponding ground truth 685

mask. As shown in Table XIII, we evaluate the performance of 686

our method, which notably requires no training and relies 687

solely on clustering. When testing on unseen classes, our 688

approach achieves an impressive 58.5% mIoU. Even for seen 689

classes, the mIoU remains at 53.1%. Finally, when evaluated 690

across all classes, the mIoU reaches 49.5%, demonstrating 691



JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 10

Global Seen 1 (Truck) Latent 1 (Road)

Latent 2 (Tree)Seen 2 (Sky) Seen 3 (House)

Fig. 5: Similarities between the CLS tokens and dense features,
with the red star indicating seen classes and the red triangle
indicating latent classes.

Image Unseen Label Seed 1 Seed 2Seen Label

Fig. 6: The visualization of pseudo masks for latent classes. For
different images, different classes can be found. The ‘seed1’
indicates the clustering results for the first seed.

the effectiveness of our clustering-based method in generating692

high-quality masks without any training or fine-tuning.693

D. Qualitative Analysis694

The visualization of the similarity between CLS tokens and695

dense features: We aim to determine whether the distillation696

process can identify the representative regions. Therefore, we697

visualize the similarities between the CLS tokens and the dense698

features as shown in Fig. 5. First, we visualize the similarities699

between the global CLS tokens and the dense features. We can700

find that all the areas correspond to the global tokens. Then,701

we obtain local CLS tokens for the seen areas, e.g., truck (top702

middle) and house (bottom middle), and we can find that the703

correspondences are also class-specific. Finally, we generate704

pseudo masks for the unannotated areas, i.e., road (top right),705

and tree (bottom right), and calculate their correspondence. We706

can also achieve the expected results.707

The roles of latent class mining: As shown in Fig. 6, this figure708

highlights the capability of our approach to discover latent709

classes. Specifically, the results depicted are obtained from710

two images. Our approach can identify the meaningful objects711

that are not annotated in the original dataset, demonstrating712

its latent for discovering unseen or unannotated entities. For713

instance, in the top of Fig. 6, the latent classes ‘tree’ and the714

‘signs’ can be found by different seeds. Besides, in the bottom715

of Fig. 6, the latent classes ‘tree’ and ‘cow’ can also be found,716

indicating our effectiveness.717

Qualitative Analysis of Each Module. Fig. 7 shows visual718

comparisons demonstrate the contribution of each module.719

Without global distillation, predictions become fragmented and720

confuse unseen classes (e.g., cow vs. giraffe). Removing local721

distillation causes semantic inconsistency within objects, while722

omitting prototype calibration leads to imprecise boundaries.723

In contrast, our full model produces accurate and consistent724

segmentation, highlighting the effectiveness of all components.725

Image Label No Global Distillation

No Local Distillation No Prototype Calibration Full Model

Fig. 7: The qualitative results of each module.

Failure cases: Fig. 9 shows representative failure cases of our 726

method. In the first row, the model misclassifies a concrete 727

as a common wall and confuses bed with carpet, indicating 728

difficulties in fine-grained object recognition under indoor 729

conditions. In the second row, the model fails to correctly 730

segment the tree and leaves. These results suggest that our 731

method still struggles with small object discrimination. 732

The visualization of prediction: We visualize the prediction of 733

our method as shown in Fig. 8. Compared with SOTA methods, 734

i.e., ZegCLIP [5], our method can obtain exceptional results 735

on both seen and unseen categories. For example, the ‘trees’ in 736

the fourth image are classified as another unseen class (road) 737

in ZegCLIP. However, our method can correctly recognize it. 738

E. Discussions 739

Discussion on CLIP-to-Seg Distillation: For global distillation, 740

our method relies solely on the CLS token representing the 741

entire image, rather than extracting CLS tokens for individual 742

regions [53]. Furthermore, our global distillation adopts a 743

whole-vision distillation approach and performs feature-level 744

aggregation instead of patch-level aggregation, which may 745

suffer from the size of patches and hurt the pixel-level 746

segmentation, compared to [70]. For local distillation, unlike 747

methods that focus exclusively on pulling positive pairs closer 748

[53], our approach also pushes negative pairs from different 749

classes further apart, ensuring more robust class separation. 750

The primary reason for selecting CLIP as teacher model is the 751

capability to perform vision-language matching, which helps 752

segmentation models generalize to classes that do not appear in 753

training. Besides, while other vision-foundation models, such as 754

SAM [71], excel at delineating object boundaries, they cannot 755

determine whether these segments belong to the same class 756

or tell what class it is. These limitations make other vision- 757

foundation models less suitable for semantic segmentation. 758

Discussion on Latent Embedding Generation: Readers may 759

be concerned about whether this method violates the zero-shot 760

setting. We argue that our method does not violate the zero- 761

shot setting for the following reasons. First, existing methods 762

such as [5, 11] also incorporate the loss from unannotated 763

areas by pushing the features in these areas away from seen 764

text embeddings. This ensures that features in unannotated 765

regions are less biased towards seen classes and enforces 766

that these features belong to unseen classes during inference. 767

Our approach achieves a similar goal but in a different 768

manner: instead of explicitly enforcing feature separation, we 769

leverage clustering to impose a self-organizing structure on 770
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Fig. 8: Visualization comparison between ZegCLIP and our methods.
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Fig. 9: The qualitative results of failure cases.

unannotated regions. Importantly, this clustering process is771

entirely unsupervised and does not utilize any labels from772

unseen classes. The clustering of features is solely driven by773

their feature similarity, without any guidance from class-level774

text embeddings. Consequently, the clustering only influences775

the spatial coherence of features within unannotated regions776

rather than introducing information that could compromise777

the zero-shot assumption. Second, we do not use unseen text778

embeddings during training, and the latent text embeddings779

merely come from visual features and serve as clustering780

centers. These clustering centers change dynamically with781

each image rather than remaining fixed like a classifier. They782

are only used to group similar features together and do not783

impose any fixed class labels, ensuring that the model does784

not learn specific unseen categories during training.785

V. CONCLUSION786

In this paper, we propose the CLIP-to-Seg Distillation787

framework to overcome the limitations of directly adapting788

CLIP for segmentation tasks. Our approach integrates both789

global and local distillation strategies to transfer CLIP’s zero-790

shot generalization capabilities to closed-set segmentation791

models. By aligning dense features from segmentation models792

with CLS tokens from CLIP at both global and local levels,793

we facilitate effective distillation from CLIP to pixel-level794

segmentation models. Additionally, introducing synthesized795

text embeddings for latent classes enhances the model’s ability796

to generalize to new concepts. Without adding extra parameters797

or computational overhead, our method achieves state-of-the-art798

performance on zero-shot segmentation benchmarks, offering799

a flexible and efficient solution to extend the generalization 800

capabilities of existing segmentation models. 801

Limitation and Future Works: Though effective, our method 802

still has some drawbacks. The pseudo masks and the text 803

embeddings for latent classes are not accurate enough, leading 804

to sub-optimal performance compared to the fully supervised 805

method. In the future, we aim to produce more accurate pseudo 806

masks and pseudo text embeddings. 807
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semantic segmentation,” Advances in Neural Information1084

Processing Systems, vol. 32, 2019.1085

[62] J. Cheng, S. Nandi, P. Natarajan, and W. Abd-Almageed,1086

“Sign: Spatial-information incorporated generative network1087

for generalized zero-shot semantic segmentation,” in1088

Proceedings of the IEEE/CVF International Conference1089

on Computer Vision, 2021, pp. 9556–9566.1090

[63] D. Baek, Y. Oh, and B. Ham, “Exploiting a joint1091

embedding space for generalized zero-shot semantic seg-1092

mentation,” in Proceedings of the IEEE/CVF International1093

Conference on Computer Vision, 2021, pp. 9536–9545.1094

[64] K. Kim, Y. Oh, and J. C. Ye, “Otseg: Multi-prompt1095

sinkhorn attention for zero-shot semantic segmentation,”1096

in Proceedings of the European Conference on Computer1097

Vision, 2024.1098

[65] F. Tung and G. Mori, “Similarity-preserving knowledge1099

distillation,” in Proceedings of the IEEE/CVF Interna-1100

tional Conference on Computer Vision, 2019, pp. 1365–1101

1374.1102

[66] X. Wang, T. Fu, S. Liao, S. Wang, Z. Lei, and T. Mei,1103

“Exclusivity-consistency regularized knowledge distilla-1104

tion for face recognition,” in Computer Vision–ECCV1105

2020: 16th European Conference, Glasgow, UK, August1106

23–28, 2020, Proceedings, Part XXIV 16. Springer, 2020,1107

pp. 325–342.1108

[67] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I.1109

Williams, J. Winn, and A. Zisserman, “The pascal visual1110

object classes challenge: A retrospective,” International1111

Journal of Computer Vision, vol. 111, no. 1, pp. 98–136,1112

Jan. 2015.1113

[68] H. Caesar, J. Uijlings, and V. Ferrari, “Coco-stuff: Thing1114

and stuff classes in context,” in Proceedings of the IEEE1115

Conference on Computer Vision and Pattern Recognition,1116

2018, pp. 1209–1218.1117

[69] R. Mottaghi, X. Chen, X. Liu, N.-G. Cho, S.-W. Lee,1118

S. Fidler, R. Urtasun, and A. Yuille, “The role of1119

context for object detection and semantic segmentation1120

in the wild,” in Proceedings of the IEEE Conference1121

on Computer Vision and Pattern Recognition, 2014, pp.1122

891–898.1123

[70] Z. Ma, G. Luo, J. Gao, L. Li, Y. Chen, S. Wang, C. Zhang,1124

and W. Hu, “Open-vocabulary one-stage detection with1125

hierarchical visual-language knowledge distillation,” in1126

Proceedings of the IEEE/CVF Conference on Computer1127

Vision and Pattern Recognition, 2022, pp. 14 074–14 083. 1128

[71] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, 1129

L. Gustafson, T. Xiao, S. Whitehead, A. C. Berg, W.- 1130

Y. Lo et al., “Segment anything,” in Proceedings of the 1131

IEEE/CVF International Conference on Computer Vision, 1132

2023, pp. 4015–4026. 1133

JIALEI CHEN (Student Member, IEEE) received 1134

the B.Eng. and M.Eng. degrees from Northeastern 1135

University, Shenyang, China in 2019 and 2022. He 1136

is currently pursuing a Ph.D. degree in information 1137

science from Nagoya University, Japan. His main 1138

research interests include semantic segmentation, 1139

zero-shot learning, and image processing. 1140

1141
Zhenzhen Quan received the B.S. degree from Shan- 1142

dong University of Science and Technology, Qingdao, 1143

China, in 2014 and received the M.S. degree from 1144

Northeastern University, Shenyang, Liaoning, China, 1145

in 2017. She is currently working toward the Ph.D. 1146

degree with the School of Information Science and 1147

Engineering, Shandong University, Qingdao, China. 1148

Her research interests include action recognition, 1149

computer vision, and machine learning. 1150

1151
CHENKAI ZHANG received the B.Eng. and B.A. 1152

degrees from Dalian University of Technology, 1153

Dalian, China in 2019, and B.Eng. and M.Eng. degree 1154

from Ritsumeikan University, Shiga, Japan in 2019 1155

and 2022. He is currently pursuing a Ph.D. degree 1156

in information science from Nagoya University, 1157

Japan. His main research interests include explainable 1158

artificial intelligence and the reliability of automatic 1159

driving. 1160

1161
Xu Zheng (Student Member, IEEE) is a Ph.D. 1162

student in the Visual Learning and Intelligent Systems 1163

Lab, Artificial Intelligence Thrust, The Hong Kong 1164

University of Science and Technology, Guangzhou 1165

Campus (HKUST-GZ). He got his B.E. and M.S. 1166

from Northeastern University, China. His research 1167

interests include multi-modal learning, sensing and 1168

perception techniques. 1169

1170
DAISUKE DEGUCHI (Member, IEEE) received 1171

the B.Eng. and M.Eng. degrees in engineering and 1172

the Ph.D. degree in information science from Nagoya 1173

University, Japan, in 2001, 2003, and 2006, respec- 1174

tively. He became a Postdoctoral Fellow at Nagoya 1175

University, in 2006. From 2008 to 2012, he was 1176

an Assistant Professor at the Graduate School of 1177

Information Science. From 2012 to 2019, he was an 1178

Associate Professor at the Information Strategy Office. 1179

Since 2020, he has been an Associate Professor with 1180

the Graduate School of Informatics. He is working on 1181

object detection, segmentation, recognition from videos, and their applications 1182

to ITS technologies, such as detection and recognition of traffic signs. He is a 1183

member of IEICE and IPS Japan. 1184

HIROSHI MURASE (Life Fellow, IEEE) received 1185

the B.Eng., M.Eng., and Ph.D. degrees in electri- 1186

cal engineering from Nagoya University, Japan. In 1187

1980, he joined Nippon Telegraph and Telephone 1188

Corporation (NTT). From 1992 to 1993, he was a 1189

Visiting Research Scientist with Columbia University, 1190

New York. Since 2003, he has been a Professor 1191

with Nagoya University. Since 2021, he has been 1192

an Emeritus Professor. His research interests include 1193

computer vision, pattern recognition, and multimedia 1194

information processing. He is a fellow of the IPSJ 1195

and the IEICE. He was awarded the IEEE CVPR Best Paper Award, in 1994, 1196

the IEEE ICRA Best Video Award, in 1996, the IEICE Achievement Award, in 1197

2002, the IEEE Multimedia Paper Award, in 2004, and the IEICE Distinguished 1198

Achievement and Contributions Award, in 2018. He received the Medal with 1199

Purple Ribbon from the Government of Japan, in 2012. 1200

1201


